Options
Upadhyayula V Varadaraju
Loading...
Preferred name
Upadhyayula V Varadaraju
Official Name
Upadhyayula V Varadaraju
Alternative Name
Varadaraju, Upadhyayula V.
Varadaraju, Upadhyayula
Varadaraju, U. V.
Varadaraju, Upadhyayula Venkata
Varadaraju, Upadhayayula V.
Varadaraju, U.
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
4 results
Now showing 1 - 4 of 4
- PublicationThermoelectric properties of a high entropy half-Heusler alloy processed by a fast powder metallurgy route(30-11-2022)
;Karati, Anirudha ;Mishra, Soumya Ranjan ;Ghosh, Sanyukta ;Mallik, Ramesh Chandra ;Shabadi, Rajashekhara ;Ramanujan, R. V.; ;Murty, B. S.A half-Heusler (HH) type high entropy alloy (HEA) Ti2NiCoSnSb has been synthesized by a fast powder metallurgy route for the first time. Mechanical alloying (MA) by wet milling produced a powder with a minor fraction of the HH phase. The dry milling route resulted in the desired single-phase HH material. Consolidation of the nanocrystalline mechanically alloyed (MA) powder by spark plasma sintering (SPS) resulted in a majority HH phase. Interestingly, the nanocrystalline alloy exhibited simultaneous enhancement in the Seebeck coefficient and electrical conductivity, with a maximum ZT of 0.13 at 973 K observed for the dry milled alloy. The band structure obtained by density functional theory (DFT) was in good agreement with the ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectroscopy results. The DFT calculations and microstructural analysis suggest that phase separation strongly influenced the thermoelectric properties. The band structure calculations provided a good rationale for the phase evolution and thermoelectric properties. - PublicationEffect of Processing Routes on the Microstructure and Thermoelectric Properties of Half-Heusler TiFe0.5Ni0.5Sb1−xSnx (x = 0, 0.05, 0.1, 0.2) Alloys(01-01-2022)
;Karati, Anirudha ;Ghosh, Sanyukta ;Mallik, Ramesh Chandra ;Shabadi, Rajashekhara ;Murty, B. S.Sn-doped TiFe0.5Ni0.5Sb1−xSnx (x = 0, 0.05, 0.1, 0.2) were synthesized by vacuum arc melting (VAM). In addition to the half-Heusler phase, secondary phases of Fe–Sb-rich compound and Ti-rich compounds were obtained after VAM. The alloys were then subjected to ball milling for 1 h and 5 h. Ball milling for 1h led to microcrystalline grains, while that for 5 h led to nanocrystalline grains. Ball milling followed by spark plasma sintering (SPS) at 1173 K led to significant reduction in size of secondary phases in the microstructure. The undoped sample exhibited a ZT of 0.008 at 873 K for both 1h and 5h BM-SPS samples. - PublicationThermoelectric properties of half-Heusler high-entropy Ti2NiCoSn1-xSb1+x (x = 0.5, 1) alloys with VEC>18(01-09-2020)
;Karati, Anirudha ;Hariharan, V. S. ;Ghosh, Sanyukta ;Prasad, Anil ;Nagini, M. ;Guruvidyathri, K. ;Mallik, Ramesh Chandra ;Shabadi, Rajashekhara ;Bichler, Lukas ;Murty, B. S.A new set of half-Heusler high-entropy alloys Ti2NiCoSn1-xSb1+x (x = 0.5, 1), with a valence electron count higher than 18, were investigated for thermoelectric applications. Vacuum arc melting was employed for synthesis. Atom probe analysis confirmed single-phase at atomic level. The alloys were subsequently ball milled for 1 h followed by spark plasma sintering for consolidation. In 1 h BM cases, the alloy with x = 0.5 exhibited a low lattice thermal conductivity of 2.48 Wm−1K−1, and a ZT of 0.29 at 873 K. - PublicationThermoelectric properties of nanocrystalline half-Heusler high-entropy Ti2NiCoSn1−xSb1+x (x = 0.3, 0.5, 0.7, 1) alloys with VEC > 18(15-12-2022)
;Karati, Anirudha ;Ghosh, Sanyukta ;Nagini, M. ;Mallik, Ramesh Chandra ;Shabadi, Rajashekhara ;Murty, B. S.Powder metallurgy route has been employed to synthesize nanocrystalline Ti2NiCoSn1−xSb1+x (x = 0.3, 0.5, 0.7, 1) alloys for thermoelectric applications. Atom probe analysis confirmed the homogeneous distribution of elements in the half-Heusler phase at a scale of few nanometers. A combination of nanostructuring, lattice distortion and interfacial scattering brings about a reduction in lower thermal conductivity which brings forth an improvement in ZT. Ti2NiCoSb2 exhibited the highest ZT of 0.26 due to the increments effected by higher power factor and lower thermal conductivity.