Options
Archita Patnaik
Loading...
Preferred name
Archita Patnaik
Official Name
Archita Patnaik
Alternative Name
Patnaik, A.
Patnaik, Archita
Main Affiliation
Email
ORCID
Scopus Author ID
1 results
Now showing 1 - 1 of 1
- PublicationPhysical and chemical implications of 100 keV H+ implantation of laser ablated PPS thin films(01-01-1998)
;Das, A. ;Bera, S. ;Dhara, S.Structural and chemical investigation for the laser ablated Poly (Phenylene Sulfide) (PPS) films upon 100 keV H+ implantation is reported here for the first time. PPS thin films were fabricated by laser ablation with a Nd: YAG laser as a source of visible photons (532 nm). The laser ablated thin films showed strong polymer breakdown resistance upto a total fluence of 1015 ions/cm2. Bulk properties of the as-deposited and the implanted samples were investigated using FTIR and UV-VIS spectroscopy. Drastic reduction in the intensity of all characteristic vibrational frequencies in the FTIR spectrum at higher doses revealed the transformation of the polymer to a conjugated carbonaceous material. UV-VIS studies showed a positive shift in the absorption edge value for the as-deposited polymer towards higher wavelengths and destruction of phenyl ring due to the H+ bombardment. X-ray Photoelectron Spectroscopic (XPS) investigation indicated the sulfur depletion as a prominent phenomenon whereas carbon content remained almost the same. XPS studies of the implanted sample also revealed a minor change in the oxidized species of carbon and more prominent change in oxidized species of sulfur which were present in the as-deposited samples. A peak at 283.4 eV attributed to 'surface reconstruction' in the XPS analysis for the as-deposited PPS film disappeared after proton implantation. © 1998 Elsevier Science B.V.