Now showing 1 - 2 of 2
  • Placeholder Image
    Publication
    Addressing Uncertainties within Active Learning for Industrial IoT
    (14-06-2021)
    Agarwal, Deepesh
    ;
    Srivastava, Pravesh
    ;
    Martin-Del-Campo, Sergio
    ;
    Natarajan, Balasubramaniam
    ;
    Internet of Things (IoT) is a key enabler of Industry 4.0 with networked devices providing sensor data to help manage, automate, streamline and optimize assets, operations and processes. In such industrial IoT settings, reliability and process experts spend a considerable amount of time in creating accurate ground-truth data to assist with the inferencing capabilities of Artificial Intelligence (AI) engines. This process can be time-consuming and sometimes inaccurate, depending on the complexity of data. Accurate expert annotated data is the foundation for many AI applications because data needs to be classified on several bases, for instance into 'normal', 'abnormal' or 'pre-abnormal' states. Such problem formulations can be appropriately addressed using Active Learning (AL) techniques. We propose an AL framework capable of handling two practical challenges: oracle uncertainty and quantification of model performance in the absence of ground truth. Consequently, the proposed approach addresses uncertainties within AL techniques by fusing information pertaining to expertise levels of the human annotators and their confidence levels corresponding to the annotation provided.
  • Placeholder Image
    Publication
    Phasor data correction and transmission system state estimation under Man-in-the-Middle attack
    (01-01-2023)
    Tharzeen, Aabila
    ;
    Natarajan, Balasubramaniam
    ;
    Cyberinfrastructure (e.g., sensors, actuators and the associated communication network) has become an integral part of our modern power grid. While these cyber technologies enhance situational awareness and operational efficiency, they also expose the physical system to cyber-attacks. In this paper, we consider the problem of transmission system state estimation based on measurements from a number of PMUs. In this context, a PMU data integrity attack, Man-in-the-Middle (MitM) attack that can potentially cause a severe impact on the grid is analyzed. Specifically, we propose a novel method based on an alternate expectation-maximization framework to mitigate the effects of these attacks on the state estimation process. Numerical tests are conducted on IEEE-14, 30 and 118 bus systems with different attack scenarios to validate the developed method. Unlike existing works, the proposed algorithm provides accurate state estimates without any prior knowledge of the location of the attack or the number of meters being attacked.