Now showing 1 - 10 of 38
  • Placeholder Image
    Publication
    Time-delay estimation in closed-loop processes using average mutual information theory
    Time-delay estimation in closed-loop systems is of critical value in the tasks of system identification, closed-loop performance assessment and process control, in general. In this work, we introduce the application of mutual information (MI) theory to estimate process delay under closed-loop conditions. The hallmark of the proposed method is that no exogenous (dither) signal is required to estimate the delay. Further, the method allows estimation of time-delays merely from the step response of the system. The method is based on the estimation of a quantity known as the average mutual information (AMI) computed between the input and output of the system. The estimation of AMI involves estimation of joint probability distribution of the input-output pair and therefore is a superset of the existing correlation-based methods, which only compute second-order moments of the joint distribution. Simulation studies are presented to demonstrate the practicality and utility of the proposed method.
  • Placeholder Image
    Publication
    Integrated approach for optimal sensor placement and state estimation: A case study on water distribution networks
    (01-04-2022)
    Mankad, Jaivik
    ;
    Natarajan, Balasubramaniam
    ;
    The objective of the design and operation of any water distribution network (WDN) includes meeting the desired demand at sufficient pressure at all nodes. However, this requires situational awareness; in other words, the knowledge of system state variables such as pressure and flow throughout the network. In this work, a hybrid approach is developed for sensor placement (SP) and state estimation (SE) that exploits the underlying correlation structure in the data, along with the principles governing the flow through circular pipes. The problem of SP in WDN is addressed since measuring the state variables throughout the network is not practical. The problem of SE that maps to a matrix completion problem under certain physical and logical constraints is solved later. The completed matrix represents the state of WDN at any given time. Benchmark networks used in literature were used to evaluate the proposed approach. The mean absolute percentage error (MAPE) of less than 5% was obtained while estimating the head available at nodes. The knowledge of the states in the entire network could help operate the network adaptively.
  • Placeholder Image
    Publication
    Self-organised maps for online detection of faults in non-linear industrial processes
    (01-01-2010)
    Jeevan, M.
    ;
    ;
    Fault detection in linear systems is a fairly matured area where the well-known principal component analysis (PCA) and its variants are widely used. However, a large class of non-linear systems exist, especially chemical processes, on which such techniques cannot be applied. The present work aims at demonstrating the application of self-organising maps (SOM) for fault detection in non-linear processes. SOM belongs to the class of unsupervised and competitive learning algorithms and it is highly capable of handling nonlinear relationships. Application of SOM to fault detection involves generation of a reference template for the process under fault-free conditions. Online fault detection is performed by generating a new template using a windowing of the data, which is compared with the reference template using a novel metric based on the node weights obtained from SOM to detect possible faults in the process. Simulation studies on two non-linear systems, namely, (1) continuously stirred tank reactor (CSTR) and (2) bioreactor process demonstrate the practicality and utility of the proposed method. © 2010 Inderscience Enterprises Ltd.
  • Placeholder Image
    Publication
    Meter placement approaches for matrix completion-based distribution system state estimator
    (01-12-2022)
    Madbhavi, Rahul
    ;
    Natarajan, Balasubramaniam
    ;
    Traditional matrix and tensor completion approaches utilize latent structures in data to impute missing entries. Recent works on distribution system state estimators employing such data imputation techniques have identified the need to incorporate fundamental system equations as constraints to improve state estimation accuracy. As a result, these techniques provide superior state estimation performance compared to their model-free counterparts and conventional state estimators. In practice, the data required for these estimators are provided by sensors/meters deployed in the network. However, prior efforts do not explore the placement of sensors that optimize the performance of the estimators. Moreover, constraints on entries of these matrices and tensors result in specific combinations of known measurements to provide better imputation results than others. Therefore, this work proposes two-meter placement approaches that leverage network parameters and linearized power flow equations to identify sensor locations. These approaches achieve this by iteratively placing sensors with the highest contribution towards minimizing the voltage residual in the selected reference cases. The first approach identifies buses that provide the highest reduction in voltage residuals. In contrast, the second approach identifies locations of a heterogeneous set of sensors that provide the highest reduction in voltage residual. The proposed approaches can also extend existing sensor deployments such as distribution phasor measurement units (D-PMU) and supervisory control and data acquisition (SCADA) sensing and measurement devices (e.g., Bellwether meters) to improve state estimation performance. The approaches have been evaluated on the IEEE 33-node distribution system and an unbalanced 3-phase 559-node distribution system.
  • Placeholder Image
    Publication
    Source separation in systems with correlated sources using NMF
    Non-negative Matrix Factorization (NMF) has been used for source separation in various fields. However, the existing methods have ignored the presence of interactions among sources/measurements which leads to incorrect results. Interactions are common in a multivariate process where the variables are physically related/correlated with one another (for example: pressure-temperature dependency in an industrial process). In this work, conventional methods are extended to take into account the interactions. The contributions of this work are as follows: (i) an augmented NMF method to correctly determine the number of sources in the presence of multiple interactions; (ii) an algorithm to identify the correct signatures of the physical sources. The conventional method of NMF is shown to be a special case of the proposed method. Simulation studies are presented to demonstrate the practicality and utility of the proposed method. © 2009 Elsevier Inc. All rights reserved.
  • Placeholder Image
    Publication
    HMM-based models of control room operator's cognition during process abnormalities. 1. Formalism and model identification
    (01-05-2022)
    Shahab, Mohammed Aatif
    ;
    Iqbal, Mohd Umair
    ;
    ;
    Operators' mental models play a central role in safety-critical domains like the chemical process industries. Accurate mental models, i.e., a correct understanding of the process and its causal linkages, are prerequisites for safe operation. Mental models are often defined and explained in abstract terms that make their interpretation subjective and prone to bias. In this work, we propose a Hidden Markov Model (HMM) based formalism to characterize control room operators' mental models while handling abnormal situations. We show that a suitable HMM representing the operator's mental model – including the states, state transition probabilities, and emission probability distributions – can be identified experimentally using data of the operator's control actions, eye gaze, and process variable values. This HMM can be used for the quantitative assessment of operators' mental models as illustrated using various case studies. We discuss the potential applications of the model in identifying various cognitive errors and human reliability assessment. In Part 2 of this paper, we use the proposed approach to assess operators' learning during training.
  • Placeholder Image
    Publication
    Metrics for objectively assessing operator training using eye gaze patterns
    (01-12-2021)
    Shahab, Mohammed Aatif
    ;
    Iqbal, Mohd Umair
    ;
    ;
    Process plant operators rely on their knowledge of process cause-and-effect relationships during abnormal situation management. Novice operators develop such process knowledge during training. Hence, holistic assessment of operators’ training is essential to ensure process safety. Currently, during training, operators’ process understanding is evaluated using criteria such as successful completion, task based measures, and operator actions that ignore their cognitive behavior. In this work, we propose an eye-tracking-based approach that uses the operator's attention allocation during different pre-specified training scenarios along with process data, alarm information, and operator actions. Our approach is based on the precept that an operator would focus their attention on those variables on the human-machine interface that they believe have a direct causal relationship to the situation at hand. Also, expert operators seek time-based information for proactive monitoring. Accordingly, to quantify the progress of a novice operator's learning, we develop two metrics — association metric and salience metric — using correspondence analysis of operators' eye gaze. To evaluate the applicability of the metrics, we conducted experiments with ten participants who performed 486 tasks. Statistical studies reveal that the proposed metrics can quantify operators’ learning and thus can be used to objectively evaluate training effectiveness.
  • Placeholder Image
    Publication
    A practical approach to improve alarm system performance: Application to power plant
    (01-05-2019)
    Sompura, Jay
    ;
    Joshi, Amit
    ;
    ;
    Process safety in chemical industries is considered to be one of the important goals towards sustainable development. This is due to the fact that, major accidents still occur and continue to exert significant reputational and financial impacts on process industries. Alarm systems constitute an indispensable component of automation as they draw the attention of process operators to any abnormal condition in the plant. Therefore, if deployed properly, alarm systems can play a critical role in helping plant operators ensure process safety and profitability. However, in practice, many process plants suffer from poor alarm system configuration which leads to nuisance alarms and alarm floods that compromise safety. A vast amount of research has primarily focused on developing sophisticated alarm management algorithms to address specific issues. In this article, we provide a simple, practical, systematic approach that can be applied by plant engineers (i.e., non-experts) to improve industrial alarm system performance. The proposed approach is demonstrated using an industrial power plant case study.
  • Placeholder Image
    Publication
    ACT-R based human digital twin to enhance operators’ performance in process industries
    (08-02-2023)
    Balaji, Bharatwaajan
    ;
    Shahab, Mohammed Aatif
    ;
    ;
    To ensure safe and efficient operation, operators in process industries have to make timely decisions based on time-varying information. A holistic assessment of operators’ performance is, therefore, challenging. Current approaches to operator performance assessment are subjective and ignore operators’ cognitive behavior. In addition, these cannot be used to predict operators’ expected responses during novel situations that may arise during plant operations. The present study seeks to develop a human digital twin (HDT) that can simulate a control room operator’s behavior, even during various abnormal situations. The HDT has been developed using the ACT-R (Adaptive Control of Thought-Rational) cognitive architecture. It mimics a human operator as they monitor the process and intervene during abnormal situations. We conducted 426 trials to test the HDT’s ability to handle disturbance rejection tasks. In these simulations, we varied the reward and penalty parameters to provide feedback to the HDT. We validated the HDT using the eye gaze behavior of 10 human subjects who completed 110 similar disturbance rejection tasks as that of the HDT. The results indicate that the HDT exhibits similar gaze behaviors as the human subjects, even when dealing with abnormal situations. These indicate that the HDT’s cognitive capabilities are comparable to those of human operators. As possible applications, the proposed HDT can be used to generate a large database of human behavior during abnormalities which can then be used to spot and rectify flaws in novice operator’s mental models. Additionally, the HDT can also enhance operators’ decision-making during real-time operation.
  • Placeholder Image
    Publication
    Quantifying situation awareness of control room operators using eye-gaze behavior
    (01-01-2017)
    Bhavsar, Punitkumar
    ;
    ;
    In an attempt to improve process safety, today's plants deploy sophisticated automation and control strategies. Despite these, accidents continue to occur. Statistics indicate that human error is the predominant contributor to accidents today. Traditionally, human error is only considered during process hazard analysis. However, this discounts the role of operators in abnormal situation management. Recently, with the goal to develop proactive strategies to prevent human error, we utilized eye tracking to understand the situation awareness of control room operators. Our previous studies reveal the existence of specific eye gaze patterns that reveal operators’ cognitive processes. This paper further develops this cognitive engineering based approach and proposes novel quantitative measures of operators’ situation awareness. The proposed measures are based on eye gaze dynamics and have been evaluated using experimental studies. Results demonstrate that the proposed measures reliably identify the situation awareness of the participants during various phases of abnormal situation management.