Now showing 1 - 2 of 2
  • Placeholder Image
    Publication
    Metrics for objectively assessing operator training using eye gaze patterns
    (01-12-2021)
    Shahab, Mohammed Aatif
    ;
    Iqbal, Mohd Umair
    ;
    ;
    Process plant operators rely on their knowledge of process cause-and-effect relationships during abnormal situation management. Novice operators develop such process knowledge during training. Hence, holistic assessment of operators’ training is essential to ensure process safety. Currently, during training, operators’ process understanding is evaluated using criteria such as successful completion, task based measures, and operator actions that ignore their cognitive behavior. In this work, we propose an eye-tracking-based approach that uses the operator's attention allocation during different pre-specified training scenarios along with process data, alarm information, and operator actions. Our approach is based on the precept that an operator would focus their attention on those variables on the human-machine interface that they believe have a direct causal relationship to the situation at hand. Also, expert operators seek time-based information for proactive monitoring. Accordingly, to quantify the progress of a novice operator's learning, we develop two metrics — association metric and salience metric — using correspondence analysis of operators' eye gaze. To evaluate the applicability of the metrics, we conducted experiments with ten participants who performed 486 tasks. Statistical studies reveal that the proposed metrics can quantify operators’ learning and thus can be used to objectively evaluate training effectiveness.
  • Placeholder Image
    Publication
    HMM-based models of control room operator's cognition during process abnormalities. 2. Application to operator training
    (01-05-2022)
    Shahab, Mohammed Aatif
    ;
    Iqbal, Mohd Umair
    ;
    ;
    Operator training is critical to ensure safe operation in safety-critical domains such as chemical process industries. Training enhances the operator's understanding of the process, which is then encapsulated as mental models. Typically, the operator's learning in traditional training programs is assessed using expert judgment or in terms of process- and operator action-based metrics. These assessment schemes, however, ignore the cognitive aspects of learning, such as mental model development and cognitive workload. The HMM-based model proposed in Part 1 offers a systematic way to quantify operators' cognition during abnormalities. In this Part 2, we show that the cognitive behaviors displayed by expert operators can be represented as target values on the HMM's state transitions and emission probability distributions. Further, we propose two axioms of learning that can capture the evolution of the operator's mental models as they learn the causal relationships in the process and gain expertise in handling abnormal situations. We validate the proposed axioms by conducting training experiments involving 10 participants performing 486 tasks. Our results reveal that the axioms can accurately assess the progress of operators' learning.