Options
Srinivasa K Reddy
Loading...
Preferred name
Srinivasa K Reddy
Official Name
Srinivasa K Reddy
Alternative Name
Reddy, K. Srinivasa
Reddy, K. Srinivas
Reddy, Srinivas
Reddy, K. S.
Reddy, Kalvala S.
Reddy, Kalvala Srinivas
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
48 results
Now showing 1 - 10 of 48
- PublicationPerformance improvement of a desiccant based cooling system by mitigation of non-uniform illumination on the coupled low concentrating photovoltaic thermal units(01-04-2022)
;Chandan, ;Baig, Hasan ;ali Tahir, Asif; ;Mallick, Tapas K.Pesala, BalaA Low Concentrating Photovoltaic Thermal system typically employs compound parabolic concentrator to focus sunlight and enhance the quality of both thermal and electrical energy extracted. One of the major issues during this process is the introduction of non-uniform illumination on the photovoltaic panels which can cause hot-spots and significantly reduce both the reliability and the electrical output from this system. This non-uniform illumination can be mitigated by integrating homogenizers which are typically linear extensions to the compound parabolic concentrators profile also referred to as elongated compound parabolic concentrators. In this work, the performance of a 2.5× Elongated Compound Parabolic Concentrator truncated to 1.7× and connected to a desiccant based cooling system has been explored. For a detailed analysis of the system, a coupled 3-D optical, electrical, thermal and process efficiency model has been developed. A full-scale prototype of the modelled system is also fabricated using a 380-Watt peak photovoltaic panel. Experiments conducted on the developed system showed a peak outlet water temperature of 56 °C at a mass flowrate of 24 L per hour. Comparative studies between compound parabolic concentrators and elongated compound parabolic concentrators based low concentrating photovoltaic thermal system is also presented to showcase the overall improvement in the process efficiency due to the mitigation of non-uniformity. Using a 400 mm length of the homogenizer the spatial non-uniformity factor was found to drop from 0.5 to 0.29 under normal incidence angle and results in a rise of 12% in the electrical output when compared to a compound parabolic concentrators-based system. The coefficient of performance of the desiccant-based air-cooling system is found to increase by 50% when coupled with two series-connected elongated compound parabolic concentrators based low concentrating photovoltaic thermal system. The improvement in coefficient of performance is mainly because of thermal and electrical energy savings from the developed system amounting to 352 kWhe/year and 665 kWhth/year, respectively. Further, the mitigation of non-uniform illumination showed a performance improvement of 5% in the coefficient of performance of the air-cooling system compared to a compound parabolic concentrators-based system. - PublicationExperimental performance investigations of an elliptical hyperbolic non-imaging solar concentrator with trapezoidal surface receiver for process heat applications(10-08-2018)
; ;Vikram, T. SrihariMallick, Tapas K.The use of non-imaging collectors has a wide scope in process heat applications based on its performance and economics. An experimental investigation of trapezoidal/concave cavity surface receiver (TSR) for non-imaging solar concentrating collector is carried out in this paper. The implementation of surface/coil receiver instead of tubular receiver for non-imaging collector is presented in this paper. A TSR with helical coil is developed for non – imaging concentrating collector, Elliptical Hyperbolic Collector (EHC). Experiments are carried to estimate the thermal performance of the system under various operating conditions such as two operating modes: series and parallel modes of operation of the collector, two circulation modes: passive and active modes. The stagnation temperature of the trapezoidal/concave cavity surface receiver is measured to be 118 °C on a clear sunny day in October and 102 °C on a cloudy day in February. The daily performance tests are performed under different operating conditions. Based on the experimental study, for the flow rate of 0.03 kg/min and 0.5 kg/min, the fluid outlet temperature is estimated to be 87 °C at 768 W/m2 and 49 °C at 908 W/m2 respectively. The corresponding instantaneous efficiency was calculated to be 9% and 40% respectively. The numerical model is developed to predict the temperature of the fluid along the receiver. The pressure drop across a receiver is estimated to be 9.3 kPa for a flow rate of 0.5 kg/min. Exergy analysis of the system is carried out and it ranges between 10 and 20%. The costs involved in fabricating the EHC system are compared to that of a non-imaging concentrating collector (CPC) of same aperture area. An economic analysis of the system is also carried out to study the feasibility of the system based on the life cycle savings method by estimating the annual solar savings from the EHC system. The present system can be a suitable option for low and medium temperature process heat applications. - PublicationInvestigation of performance and emission characteristics of a biogas fuelled electric generator integrated with solar concentrated photovoltaic system(01-07-2016)
; ;Aravindhan, S.Mallick, Tapas K.Integration of renewable energy systems with the appropriate technology plays a pivotal role in resolving the problem of sustainable energy supply. This paper is aimed to describe the concept of integration of biomass and solar concentrated photovoltaic (CPV) energy system. The present study focused particularly on the investigation of performance and emission from a 1.4 kVA Spark Ignition, constant speed generator using raw biogas integrated in hybrid energy system. The experiments are conducted at different fuel flow rates under varying electric loading conditions. Comparing with LPG as fuel, the power deterioration is observed to be 32% on raw biogas, due to its low calorific value. The maximum power output and brake thermal efficiency using biogas is witnessed to be 812 W and 19.50% respectively. The exhaust emission analysis of generator using biogas displays considerably reduced carbon monoxide and hydrocarbons whereas there is no significant difference in nitrogen oxides concentration levels while comparing with LPG, ascertaining it to be an eco-friendly fuel. The biogas fuelled electric generator integration with CPV system can attain sustainable rural energy supply. - PublicationElectrical enhancement period of solar photovoltaic using phase change material(01-06-2019)
;Khanna, Sourav ;Newar, Sanjeev ;Sharma, Vashi; ;Mallick, Tapas K. ;Radulovic, Jovana ;Khusainov, Rinat ;Hutchinson, DavidBecerra, VictorTemperature management in photovoltaic (PV) is critical for the power output. Phase Change Material (PCM) usage enables one to remove heat from the system and achieve enhanced electrical output. This study aims at finding the period of PV electrical enhancement, the increase in power and increase in electrical efficiency achieved using PCM under different working circumstances. Results suggest that as the angle of approach of wind changes from 75° to 0° the electrical enhancement period elevates from 7.0 h to 8.6 h for 5 cm deep PCM box. But, the increase in power drops from 17.6 W/m 2 to 13.6 W/m 2 . As wind speed changes from 6 m/s to 0.2 m/s, the electrical enhancement period drops from 9.1 h to 6.4 h. But, the increase in power rises from 11.8 W/m 2 to 22.8 W/m 2 . The rise in ambient temperature 289 K to 299 K leads to decrement of electrical enhancement period from 12.6 h to 7.1 h. But the increase in power rises from 15.9 W/m 2 to 21.4 W/m 2 . Elevation in temperature for liquification from 291 K to 301 K leads to increment of electrical enhancement period from 6.5 h to 12.3 h. - PublicationPerformance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions(01-01-2017)
;Khanna, Sourav; Mallick, Tapas K.In photovoltaic (PV) cells, a large fraction of solar radiation gets converted into heat which raises its temperature and decreases its efficiency. The heat can be extracted by attaching a box containing phase change material (PCM) behind the PV panel. Due to large latent heat of PCM, it can absorb heat without rise in temperature. It will lower down the PV temperature and will increase its efficiency. The available numerical studies analysed the vertical PV-PCM systems. However, PV panels are generally tilted according to latitude of the place. Thus, in the current work, performance analysis of the tilted PV-PCM is carried out. The effects of tilt-angle, wind-direction, wind-velocity, ambient-temperature and melting-temperature of PCM on the rate of heat extraction by PCM, melting process of PCM and temperature of PV-PCM system are also studied. The results show that as tilt-angle increases from 0° to 90°, the PV temperature (in PV-PCM system) decreases from 43.4 °C to 34.5 °C which leads to increase in PV efficiency from 18.1% to 19%. The comparison of PV-PCM with only-PV is also carried out and it is found that PV temperature can be reduced by 19 °C by using PCM and efficiency can be improved from 17.1% to 19%. - PublicationGeneral correlations among geometry, orientation and thermal performance of natural convective micro-finned heat sinks(24-08-2015)
;Micheli, Leonardo; Mallick, Tapas K.The interest in micro-technologies has increased in the last decades, because of the low volumes and high performance granted by their application. Micro-fins can find application in several fields, such as power electronics, concentrating photovoltaics and LED. Although micro-technologies have been widely applied in cooling, there is still a lack of knowledge on the thermal behavior of micro-finned heat sinks under natural convective conditions. In the present study, the correspondences between fin geometries and heat transfer coefficients, as well as the effects of the orientation, are experimentally investigated using silicon micro-finned heat sinks with different geometries. The heat sinks are made of 5 cm × 5 cm squared silicon wafer and the fin height ranges between 0.6 mm and 0.8 mm, the spacing between 0.2 mm and 0.8 mm and the thickness between 0.2 and 0.8 mm. Power loads higher than those considered in previous works are studied. The experimental setup is validated using a software simulation and the Nusselt number correlation available in literature. The influence of the fin thickness on this parameter is analyzed and a modified correlation is proposed. Also, the effect of the radiative heat exchange on the overall heat transfer is considered and commented. An analysis of the uncertainty is conducted and reported too. - PublicationClimatic behaviour of solar photovoltaic integrated with phase change material(15-06-2018)
;Khanna, Sourav; Mallick, Tapas K.In photovoltaic (PV) cells, a large portion of the solar-irradiance becomes heat which shoots the cell temperature up and decreases its electrical efficiency. The heat can be removed using phase-change-material (PCM) at the rear of the PV. In literature, the researchers have reported the performance of PV-PCM for their respective locations. However, selection criteria for climates suitable for PCM integration are not reported yet. Thus, it has been carried out in the current work. The model has been validated against the experimental measurements. It has been concluded that (i) the climates having less variations in the ambient temperature are more suitable for PCM integration. The electricity enhancement achieved by PV cooling is 9.7%. It reduces to 6.6% for the climate having large variations, (ii) Heat extraction by PCM-systems is more effective in warm climates in comparison to cold climates, (iii) PCM integration performs better in climates with low wind-speed, (iv) PCM is more effective for the climates where wind-flow is across the PV and (v) Climates having high solar-radiation is better for heat removal by PCM. - PublicationPhotoelectrochemical Water Splitting Using a Concentrated Solar Flux-Assisted LaFeO3Photocathode(28-09-2020)
;Gupta, M. V.N.Surendra ;Baig, Hasan; ;Mallick, Tapas K. ;Pesala, BalaTahir, Asif A.Photoelectrochemical (PEC) water splitting by direct solar irradiation has been considered as a route to produce solar fuel, but the technique is impeded by limitation of the photocathode materials. Although the LaFeO3 photocathode has been identified as a potential candidate for hydrogen generation with excellent stability, lower current densities limit its PEC performance. Using solar concentration could prove to be an effective method to leverage its performance. In this study, we have developed a strategy to improve the current density of the LaFeO3 photocathode by applying concentrated solar flux. The results demonstrate that the photocurrent density follows a linear relationship with flux concentration and twofold performance enhancement with 18 times of incident flux. Furthermore, the addition of H2O2 to the electrolyte solution has significantly improved the photocurrent induced by LaFeO3 because of efficient scavenging of electrons. The fabricated LaFeO3 photocathode is translucent, and therefore, a reflector element is placed behind the substrate to redirect light back to the photocathode. The incorporation of high flux concentration, scavenger and reflector element, enhanced current density by nine times (to 0.872 mA/cm2). Our results demonstrate that the concentrated solar flux-assisted LaFeO3 photocathode will play a significant role in renewable hydrogen production, and the study will provide a direction to PEC water splitting. - PublicationThree dimensional analysis of dye-sensitized, perovskite and monocrystalline silicon solar photovoltaic cells under non uniform solar flux(05-01-2021)
;Singh, Preeti ;Khanna, Sourav ;Mudgal, Vijay ;Newar, Sanjeev ;Sharma, Vashi ;Sundaram, Senthilarasu; ;Mallick, Tapas K. ;Becerra, Victor ;Hutchinson, David ;Radulovic, JovanaKhusainov, RinatFor low/high concentration, when the distribution of solar radiation is non-uniform over the surface of the solar cell, it gets heated up non-uniformly which affects the cell efficiency. Thus, in the present work, three dimensional analysis of the solar cells is carried out under non-uniform solar flux. It involves partial differential equations. For silicon cells, studies are available that use numerical techniques (involving iterations) to solve the differential equations. However, if the differential equations can be solved analytically, one can get an analytical expression for three dimensional non-uniform temperature distribution of the cell. The current work aims at it. Dye-sensitized (DSSC), perovskite and mono-Si cells are investigated. The effects of wind direction, its speed, inclination and solar irradiance on the three dimensional temperature distribution, heat losses and cell efficiency have been investigated. It is concluded that with increase in wind azimuthal from 0° to 90°, the efficiency decreases from 22.1% to 21.3% for mono-Si, 19.0% to 18.0% for perovskite and 12.0% to 11.9% for DSSC. - PublicationPrototype fabrication and experimental investigation of a conjugate refractive reflective homogeniser in a cassegrain concentrator(01-01-2017)
;Shanks, Katie ;Baig, Hasan ;Singh, N. Premjit ;Senthilarasu, S.; Mallick, Tapas K.The conjugate refractive reflective homogeniser (CRRH) is experimentally tested within a cassegrain concentrator of geometrical concentration ratio 500× and its power output compared to the theoretical predictions of a 7.76% increase. I–V traces are taken at various angles of incidence and experimental results showed a maximum of 4.5% increase in power output using the CRRH instead of its purely refractive counterpart. The CRRH utilises both total internal reflection (TIR) within its core refractive medium (sylguard) and an outer reflective film (with an air gap between) to direct more rays towards the receiver. The reflective film captures scattered refracted light which is caused by non-ideal surface finishes of the refractive medium. The CRRH prototype utilises a 3D printed support which is thermally tested, withstanding temperatures of up to 60 °C but deforming at >100 °C. A maximum temperature of 226.3 °C was reached within the closed system at the focal spot of the concentrated light. The material properties are presented, in particular the transmittance of sylguard 184 is shown to be dependent on thickness but not significantly on temperature. Utilising both TIR and standard reflection can be applied to other geometries other than the homogeniser presented here. This could be a simple but effective method to increase the power of many concentrator photovoltaics.