Options
Srinivasa K Reddy
Loading...
Preferred name
Srinivasa K Reddy
Official Name
Srinivasa K Reddy
Alternative Name
Reddy, K. Srinivasa
Reddy, K. Srinivas
Reddy, Srinivas
Reddy, K. S.
Reddy, Kalvala S.
Reddy, Kalvala Srinivas
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
2 results
Now showing 1 - 2 of 2
- PublicationOptimization of finned solar photovoltaic phase change material (finned pv pcm) system(01-08-2018)
;Khanna, Sourav; Mallick, Tapas K.Heat generation during the operation of the photovoltaic (PV) cell raises its temperature and results in reduced electrical output. The heat produced in the process can be removed by attaching phase change material (PCM) at the back of the PV panel which can contain the PV temperature substantially and increase its efficiency. Fins can be used inside the PCM container to enhance the heat transfer. In literature, it is observed that as soon as PCM is melted completely, the heat extraction rate of PCM reduces which again leads to increase in PV temperature. However, the study carrying out the optimization of Finned-PV-PCM system to keep PV temperature low during operation for different solar irradiance levels is not available in literature. Thus, in the current study, the most suitable depth of PCM container is calculated for different solar irradiance levels. In addition, how it is affected with spacing between successive fins, fin length and fin thickness has been studied. The best fin dimensions are also calculated. The results show that the most suitable depth of PCM container is 2.8 cm for ∑IT = 3 kWh/m2/day and 4.6 cm for ∑IT = 5 kWh/m2/day for the chosen parameters. The best spacing between successive fins (to keep PV temperature low) is 25 cm, best fin thickness is 2 mm and best fin length is the one when it touches the bottom of the container. PV, PV-PCM and Finned-PV-PCM systems are also compared. For PV-PCM system (without fins), the most suitable depth of PCM container is 2.3 cm for ∑IT = 3 kWh/m2/day and 3.9 cm for ∑IT = 5 kWh/m2/day. - PublicationOptimization of solar photovoltaic system integrated with phase change material(15-03-2018)
;Khanna, Sourav; Mallick, Tapas K.The rise in the temperature of photovoltaic (PV) leads to decrease in the solar to electricity conversion efficiency. This paper presents a simulated study to investigate the thermal management of the PV panel using phase change material (PCM). It is found that once the PCM is fully melted, the rate of heat extraction by PCM decreases and, thus, the PV temperature starts increasing rapidly. In literature, the studies related to the performance analysis of the PV-PCM system are available. However, the optimization of the PCM quantity to cool the PV in various operating conditions and solar radiation levels is not available. Thus, it has been carried out in the presented work. The effects of the operating conditions (wind azimuth angle i.e. wind direction, wind velocity, melting temperature of PCM and ambient temperature) on the optimum depth of the PCM container have been analysed. The results show that as wind azimuth angle increases from 0° to 90°, the optimum depth of the PCM container (to maintain the PV at lower temperature) increases from 3.9 cm to 5.3 cm for ∑IT = 5 kWh/m2/day and from 2.4 cm to 3.2 cm for ∑IT = 3 kWh/m2/day for the chosen parameters.