Options
Lelitha Devi Vanajakshi
Loading...
Preferred name
Lelitha Devi Vanajakshi
Official Name
Lelitha Devi Vanajakshi
Alternative Name
Vanajakshi, L.
Vanajakshi, Lelitha Devi
Vanajakshi, L. D.
Vanajakshi, Lelitha D.
Devi, Lelitha
Vanajakshi, Lelitha
Vanajakashi, Lelitha
Lanajakshi, Lelitha
Vanjakshi, Lelitha
Main Affiliation
Email
Scopus Author ID
Google Scholar ID
35 results
Now showing 1 - 10 of 35
- PublicationA model based approach to predict stream travel time using public transit as probes(01-08-2011)
;Kumar, S. Vasantha; Travel time is one of the most preferred traffic information by a wide variety of travelers. Travel time information provided through variable message signs at the roadside could be viewed as a traffic management strategy designed to encourage drivers to take an alternate route. At the same time, it could also be viewed as a traveler information service designed to ensure that the driver has the best available information based on which they can make travel decisions. In an Intelligent Transportation Systems (ITS) context, both the Advanced Traveler Information Systems (ATIS) and the Advance Traffic Management Systems (ATMS) rely on accurate travel time prediction along arterials or freeways. In India, currently there is no permanent system of active test vehicles or license plate matching techniques to measure stream travel time in urban arterials. However, the public transit vehicles are being equipped with Global Positioning System (GPS) devices in major metropolitan cities of India for providing the bus arrival time information at bus stops. However, equipping private vehicles with GPS to enable the stream travel time measurement is difficult due to the requirement of public participation. The use of the GPS equipped buses as probe vehicles and estimating the stream travel time is a possible solution to this problem. The use of public transit as probes for travel time estimation offers advantages like frequent trips during peak hours, wide range network coverage, etc. However, the travel time characteristics of public transit buses are influenced by the transit characteristics like frequent acceleration, deceleration and stops due to bus stops besides their physical characteristics. Also, the sample size of public transit is less when compared to the total vehicle population. Thus mapping the bus travel time to stream travel time is a real challenge and this difficulty is more complex in traffic conditions like in India with its heterogeneity and lack of lane discipline. As a pilot study, a model based approach using the Kalman filtering technique to predict stream travel time from public transit is carried out in the present study. Since it is only a pilot study, only twowheeled vehicles have been considered as they constitute a major proportion in the study area. The prediction scheme is corroborated using field data collected by carrying GPS units in two-wheelers traveling along with the buses under consideration. The travel time estimates from the model were compared with the manually observed travel times and the results are encouraging. © 2011 IEEE. - PublicationTraffic Density Estimation under Lane Indisciplined Conditions using Strips along the Road Width(09-05-2019)
;George, Reenu ;Kumar, B. Anil; In this paper, a model based estimation scheme has been proposed to estimate density incorporating the heterogeneity and lane indiscipline observed in Indian traffic. In order to incorporate lane indiscipline, the road stretch under study was considered as multiple parallel strips. Time occupancy and composition based weighted vehicle length were used to incorporate heterogeneity. Then, using these, a single state non-continuum macroscopic model was developed with density as the state variable and time occupancy as the output variable. The Kalman filtering technique was used for dynamic estimation of density. The estimator was corroborated using data generated from a microscopic traffic simulation software, VISSIM. Results obtained showed that the proposed approach could provide accurate density estimates and reproduced traffic characteristics better than without considering lane indiscipline. - PublicationDynamical systems approach for travel time prediction in intermediate section under mixed traffic conditions(01-01-2022)
;Anusha, S. P.; An urban arterial can be considered a series of intersections, intermediate sections (defined as those that link intersections and mid-block areas), and mid-block sections. The intermediate section is characterized by varying speed characteristics at its entry and exit. A vehicle exiting the intersection and entering the intermediate section would accelerate and gradually attain uniform speed when it leaves the intermediate section (entry to the mid-block). Most of the reported travel time studies considered the delays at intersections and the travel times in mid-blocks to get the network level travel time without paying attention to the variability of speeds and travel time at intermediate sections. The present study concentrates on the travel time estimation of the intermediate section, which is not well-discussed in the literature. A speed estimation scheme was developed for the entry and exit of the intermediate section (characterized by varying speed ranges) using a dynamic model-based estimation scheme that captured the speed variations effectively. Intermediate link travel time was then estimated using a weighted average speed-based method. The effects of heterogeneity and limited lane discipline in the traffic stream of mixed traffic were considered using two model formulations, one that represented the traffic stream in Passenger Car Units (PCU) and the other in different vehicle classes for travel time estimation. The developed estimation schemes can be used as a possible application in Intelligent Transportation Systems (ITS) for real-time estimation of travel time at urban arterials under mixed traffic conditions. - PublicationRecurrence theory-based platoon analysis under Indian traffic conditions(01-08-2018)
;Badhrudeen, Mohamed; ; ;Sharma, AnujThomas, HelenThe phenomenon of platoon dispersion deals with the spreading out of groups of vehicles discharged together from a signal (platoon) as they move along the roadway during normal traffic operations. Understanding and analyzing this behavior is important in efficient traffic operations and management. There are different platoon dispersion models reported in the literature, out of which Robertson's model is one of the oldest and widely used. However, all the existing studies were from homogeneous and lane-based traffic conditions and few studies studied platoon dispersion behavior under traffic conditions such as those existing in India. In this study, data were collected in a typical Indian urban arterial road. To account for the heterogeneous and laneless Indian traffic, Roberston's model was modified and an optimization approach was used to obtain the coefficients. The proposed model's performance was evaluated and compared with the original Robertson's model after calibrating for the specific traffic conditions under consideration. Platoon parameters were also estimated using both proposed and calibrated models and the results were compared, which showed a better performance of the proposed model compared to the calibrated Robertson's model. Though the proposed model was tested for heterogeneous and laneless traffic data, it is in no way constraining and is generic enough to be applied for other traffic conditions. - PublicationAnalytical approach to identify the optimum inputs for a bus travel time prediction method(01-01-2015)
;Kumar, B. Anil ;Mothukuri, Snigdha; Even though new infrastructure is being developed to meet demand, increased urbanization and vehicle ownership have increased the congestion levels in Indian cities. Attracting more travelers to public transport is an option to reduce congestion but still remains a challenge, mainly because of the uncertainty of service. A reliable and accurate system for predicting vehicle arrival can help make public transportation more attractive. An accurate prediction method should be used to provide reliable information to passengers, and accuracy depends on the input data used. Therefore, identifying the optimum inputs and incorporating them in the prediction method become important. The optimum number of inputs required for best prediction performance was identified with an analytical approach. A model-based algorithm motivated by the Kalman filter was used to predict bus travel time with the use of GPS data. A case study was conducted on two selected bus routes in the city of Chennai, India, to evaluate the prediction accuracy of the proposed method. Results obtained from the algorithm were promising and showed the prediction accuracy to be ±5 min for a prediction window of 30 min in 92% of instances. The predicted travel time can be used to provide realtime bus arrival information to the public through various media, including web pages, mobile applications, and display boards. - PublicationTravel time prediction under heterogeneous traffic conditions using global positioning system data from buses(19-01-2009)
; ; Sivanandan, R.Travel time information is a vital component of many intelligent transportation systems (ITS) applications. In recent years, the number of vehicles in India has increased tremendously, leading to severe traffic congestion and pollution in urban areas, particularly during peak periods. A desirable strategy to deal with such issues is to shift more people from personal vehicles to public transport by providing better service (comfort, convenience and so on). In this context, advanced public transportation systems (APTS) are one of the most important ITS applications, which can significantly improve the traffic situation in India. One such application will be to provide accurate information about bus arrivals to passengers, leading to reduced waiting times at bus stops. This needs a real-time data collection technique, a quick and reliable prediction technique to calculate the expected travel time based on real-time data and informing the passengers regarding the same. The scope of this study is to use global positioning system data collected from public transportation buses plying on urban roadways in the city of Chennai, India, to predict travel times under heterogeneous traffic conditions using an algorithm based on the Kalman filtering technique. The performance of the proposed algorithm is found to be promising and expected to be valuable in the development of APTS in India. The work presented here is one of the first attempts at real-time short-term prediction of travel time for ITS applications in Indian traffic conditions. © The Institution of Engineering and Technology 2008. - PublicationSpatio-temporal modelling and prediction of bus travel time using a higher-order traffic flow model(15-06-2022)
;Bharathi, Dhivya; Accurate bus travel time prediction in real-time is challenging, as numerous factors such as fluctuating travel demand, incidents, signals, bus stops, dwell times, and seasonal variations can affect travel time, a spatio-temporal variable. Literature that considered the spatio-temporal evolution of bus travel time adopting traffic flow theory-based models investigated one-equation models (also widely known as first-order model) predominantly while the two-equation models (commonly known as higher-order models) have not been sufficiently explored due to their complex structure, parameters to calibrate, hardship in obtaining the data, and difficulty in discretizing and solving. Motivated by this, the present study explores the suitability of higher order traffic flow models for the prediction of bus travel time. This study adopted a well-known two-equation model ‘Aw-Rascle model‘ (Aw and Rascle, 2000), which addressed most of the limitations of the previous models, and discretized using a Finite volume method to preserve the conservational properties of Partial Differential Equations (PDE). As Global Positioning System (GPS) is a widespread data source for transit systems, the identified model was rewritten in terms of speed by adopting a suitable pressure function. The discretized model was represented in the state-state-space form and integrated with a filtering technique using appropriate inputs, to facilitate real-time implementation. The performance of the proposed methodology was evaluated and compared with a first order model (Lighthill Whittam Richards (LWR) model) based approach to understand the efficacy of the higher-order models in travel time prediction. The prediction accuracy in terms of Mean Absolute Percentage Error (MAPE) was around 14% for the proposed methodology with an absolute deviation of around +/-1.2 min, which was better than the existing LWR model-based prediction method. The developed real-time prediction methodology is a promising one to be integrated with Advanced Public Transportation Systems (APTS) applications. - PublicationPattern-based time-discretized method for bus travel time prediction(01-06-2017)
;Kumar, B. Anil; Predicting and providing information about bus arrival time to passengers accurately is a very important aspect of advanced public transportation systems (APTS), a major functional area of intelligent transportation systems. However, the information provided to passengers should be reliable. The reliability of such information provided to passengers depends on the prediction method used, which in turns depends on the input data used in the method. This means that identifying the most significant/appropriate input data and using them in the method are important. So, in the present study, travel time pattern analysis was carried out to find the most significant inputs by performing statistical tests for each day of the week separately. Also, a model-based Kalman filtering algorithm was developed to predict bus travel time by using the identified patterns effectively based on temporal discretization under heterogeneous traffic conditions. The performance of the proposed algorithm showed a clear improvement in prediction accuracy when compared with a prediction method using space discretization. - PublicationDevelopment of a real-time bus arrival prediction system for Indian traffic conditions(01-09-2010)
;Padmanaban, R. P.S. ;Divakar, K.; The accuracy of Bus Traveler Information Systems (BTIS) depends on several factors such as accuracy of the input data, speed of data transfer, data quality control and performance of the prediction scheme. A majority of the existing BTIS in India does not take into account the real-time data and the quality control of data. Also, there is a scope for improving the performance of the underlying prediction schemes. There are several studies on real-time bus arrival time prediction under homogeneous traffic conditions. However, the traffic condition in India is different and direct implementation of those studies may not yield the best results. One of the main components of bus travel time is the delay time at bus stops, in addition to the other common delays. These delays need to be incorporated in the prediction scheme for better accuracy, which is not the case currently in most studies. Also, there is a need to develop an accurate automated bus arrival time prediction system using real-time data under heterogeneous traffic conditions. This study presents a model-based algorithm that uses real-time data from field and takes delays automatically into account for an accurate prediction of bus arrival time. The results obtained are compared with the currently adopted field method and show a clear improvement in the prediction accuracy. © 2010 The Institution of Engineering and Technology. - PublicationBus travel time prediction using a time-space discretization approach(01-06-2017)
;Kumar, B. Anil; The accuracy of travel time information given to passengers plays a key role in the success of any Advanced Public Transportation Systems (APTS) application. In order to improve the accuracy of such applications, one should carefully develop a prediction method. A majority of the available prediction methods considered the variation in travel time either spatially or temporally. The present study developed a prediction method that considers both temporal and spatial variations in travel time. The conservation of vehicles equation in terms of flow and density was first re-written in terms of speed in the form of a partial differential equation using traffic stream models. Then, the developed speed based equation was discretized using the Godunov scheme and used in the prediction scheme that was based on the Kalman filter. From the results, it was found that the proposed method was able to perform better than historical average, regression, and ANN methods and the methods that considered either temporal or spatial variations alone. Finally, a formulation was developed to check the effect of side roads on prediction accuracy and it was found that the additional requirement in terms of location based data did not result in an appreciable change in the prediction accuracy. This clearly demonstrated that the proposed approach based on using vehicle tracking data is good enough for the considered application of bus travel time prediction.