Now showing 1 - 2 of 2
  • Placeholder Image
    Publication
    Effect of Sodium Hydroxide on the Interfacial Tension of Hydrocarbon—Water System
    (01-01-2021)
    Seetharaman, Gomathi Rajalakshmi
    ;
    An ultra-low IFT (interfacial tension) is required between the liquid–liquid systems to dislodge the crude oil completely from the pores of the formation. As a huge amount of alkali is used for this purpose, scale formation and formation damage near wellbore region is a common issue. To perform an economically and environmentally viable process, it is obligatory to design the process with low and optimum concentration of alkali. Moreover, if the concentration of alkali is properly designed according to the oil chemistry, the alkali flooding alone could result in a favorable recovery for high acid number crude oil. So, the present study utilized low concentration of NaOH, to understand the behavior of alkali at the IFT of hydrocarbon–water system. Hydrocarbons like heptane and benzene were selected to understand the influence of hydrocarbon type on the IFT reduction. It was found that the IFT between the hydrocarbon–water system continuously decreases with an increase in NaOH concentration; moreover, a minimum concentration of 100 ppm is required to initiate reduction reaction. It is evident to state that IFT is dependent upon type of the hydrocarbon, because the enhanced reduction is observed in aromatics–water system using NaOH due to stronger cation-π interaction.
  • Placeholder Image
    Publication
    Interaction of Nanoparticles with Reservoir Fluids and Rocks for Enhanced Oil Recovery
    (01-01-2020)
    Behera, Uma Sankar
    ;
    Nanotechnology is a common word used by academia which is referred to the applied nanoscience conducted at nanoscale (1–100 nm) for variety of industrial applications. Application of nanotechnology in various fields is increasing extensively resulting in an enormous amount of publications in the distinct field. Nanoparticles (NPs) possess unique properties due to their larger surface area which leads to prolong application in multifold. Researchers working in enhanced oil recovery (EOR) areas are trying to get rid of challenges faced by the oil and gas companies for crude oil production. This chapter, therefore, focuses on work carried out by the researchers on chemical and rarely on thermal, gas injection, and biological EOR methods using NPs. Chemical enhanced oil is recovery (CEOR) methods taken into consideration due to their popularity in oilfields than the other existing methods. Viscosity, interfacial tension (IFT), and wettability are the major influencing factors for EOR. The authors intend to make the reader understand the pore-scale mechanism behind the enhanced oil recovery in the presence of NPs. In the early stage of enhanced oil recovery, it is essential to understand the properties of various NPs. Literature review reveals that properties of NPs mostly depend on methods they are prepared. Hence, at the beginning of the chapter, the types of NPs, preparation, and their characterization are explained briefly with the application of various nanoparticles in CEOR. Limitation of NPs application in chemical EOR area is spelled out clearly with the recommendation at the end.