Now showing 1 - 3 of 3
  • Placeholder Image
    Publication
    Design and development of a piezoelectrically actuated micropump for drug delivery application
    (01-01-2014)
    Eladi, Paul Braineard
    ;
    ;
    Micropumps form the heart of several microfluidic systems like micro total analysis system (µTAS) and drug delivery devices, which have resulted from the advancement of silicon micromachining technology. Among the different available types of micropumps, valveless micropumps are better suited for biological applications as they do not have flow-rectifying valves and are less prone to clogging and wear. However, their main drawback is low thermodynamic efficiency. This can be improved if we have a better understanding of the effects of geometry on the performance. This forms one of the objectives of this work. This chapter describes the activity on the design and development of valveless micropumps. A numerical parametric study of the performance of valveless micropumps has been carried out and is presented to bring out the effects of different geometrical parameters. Based on these design approaches, silicon-based micropumps are fabricated and characterized. The performance of one of these micropumps is compared with designed value in this work.
  • Placeholder Image
    Publication
    Fabrication of monolithic SU-8 microneedle arrays having different needle geometries using a simplified process
    (01-06-2021)
    Ajay, A. P.
    ;
    ;
    Transdermal drug delivery using hollow microneedle enables creating small, wearable and minimally invasive closed-loop system. Polymer hollow microneedles are preferable because they are cost-effective and easy to manufacture. SU-8 is chosen for creating the hollow microneedles as it is a biocompatible photopolymer with robust mechanical properties. Previously reported SU-8 microneedles either use melt casting process for coating SU-8 which is laborious or do not have monolithic structures, thereby making these mechanically weak and difficult to integrate. To the best of our knowledge, for the first time, we report the use of a single-step spin coating process to achieve the desired thickness of SU-8 while using UV lithography to create a monolithic microneedle array. Three types of microneedles were fabricated with outer dimensions varying from 90 to 180 μm, and lumen dimensions ranging from 60 to 80 μm and needle height of 600 μm. These needles are fabricated in a 10×10 array with a platform thickness of 300 μm. Geometrical, mechanical and fluid flow characterisations are carried out for the fabricated arrays. We report the use of a non-destructive evaluation method to characterise the lumen of the fabricated microneedles. The fabricated needles are robust and offer low resistance to fluid flow. The triangular needles can withstand a bending load of 0.2 N and an axial load of 0.7 N. The needles with circular lumen offer least resistance to fluid flow of 0.2 Pa-min μL−1.
  • Placeholder Image
    Publication
    Characterization and ultrasound-pulse mediated destruction of ultrasound contrast microbubbles
    (01-12-2006)
    Sarkar, Kausik
    ;
    Jain, Pankaj
    ;
    Intravenously injected encapsulated microbubbles improve the contrast of an ultrasound image. Their destruction is used in measuring blood flow, stimulating arteriogenesis, and drug delivery. We measure attenuation and scattering of ultrasound through solution of commercial contrast agents such as Sonazoid and Definity. We have developed a number of different interfacial rheology models for the encapsulation of such microbubbles. By matching with experimentally measured attenuation, we obtain the characteristic rheological parameters. We compare model predictions with measured subharmonic responses. We also investigate microbubble destruction under acoustic excitation by measuring time-varying attenuation data. © 2006 American Institute of Physics.