Options
Mallikarjuna J M
Loading...
Preferred name
Mallikarjuna J M
Official Name
Mallikarjuna J M
Alternative Name
Mallikarjuna, Jm
Mallikarjuna, J. M.
Mallikarjuna, Jawali Maharudrappa
Mallikarjuna, Jawali Maharudrppa
Main Affiliation
Email
ORCID
Scopus Author ID
Researcher ID
Google Scholar ID
2 results
Now showing 1 - 2 of 2
- PublicationEffect of Mixture Distribution on Combustion and Emission Characteristics in a GDI Engine - A CFD Analysis(01-01-2017)
;Addepalli, S. Krishna ;Saw, Om PrakashMixture distribution in the combustion chamber of gasoline direct injection (GDI) engines significantly affects combustion, performance and emission characteristics. The mixture distribution in the engine cylinder, in turn, depends on many parameters viz., fuel injector hole diameter and orientation, fuel injection pressure, the start of fuel injection, in-cylinder fluid dynamics etc. In these engines, the mixture distribution is broadly classified as homogeneous and stratified. However, with currently available engine parameters, it is difficult to objectively classify the type of mixture distribution. In this study, an attempt is made to objectively classify the mixture distribution in GDI engines using a parameter called the "stratification index". The analysis is carried out on a four-stroke wall-guided GDI engine using computational fluid dynamics (CFD). All CFD sub-models used, in this study, are validated with the available experimental and CFD results from the literature before carrying out the analysis. Three types of mixture distributions viz., ideally homogeneous, ideally stratified and mal-distributed mixtures are defined and their effect on combustion, performance and emission characteristics of the engine are analyzed. Further, the effect of fuel injector orientation on the mixture distribution in the combustion chamber is analyzed for three different orientations of the fuel injector viz., -15, 0 and 15° with the vertical. From the results, it is found that the early fuel injection doesn't produce an ideally homogeneous mixture. Also, among the cases of the stratified mixtures, it is found that, the fuel injector orientation of 15° results in a mixture that is closer to the ideally stratified one. This is characterized by the value of stratification index that is close to 1. - PublicationEffects of Cylinder Head Geometry on Mixture Stratification, Combustion and Emissions in a GDI Engine - A CFD Analysis(15-01-2019)
;Saw, Om Prakash ;Addepalli, Srinivasa KrishnaPreparation of air-fuel mixture and its stratification, plays the key role to determine the combustion and emission characteristics in a gasoline direct injection (GDI) engine working in stratified conditions. The mixture stratification is mainly influenced by the in-cylinder flow structure, which mainly relies upon engine geometry i.e. cylinder head, intake port configuration, piston profile etc. Hence in the present analysis, authors have attempted to comprehend the effect of cylinder head geometry on the mixture stratification, combustion and emission characteristics of a GDI engine. The computational fluid dynamics (CFD) analysis is carried out on a single-cylinder, naturally-aspirated four-stroke GDI engine having a pentroof shaped cylinder head. The analysis is carried out at four pentroof angles (PA) viz., 80 (base case), 140, 200 and 250 with the axis of the cylinder. The entire CFD simulations are performed at the engine speed of 2000 rev/min., and the overall equivalence ratio (ER) of 0.75. Finally, it is observed that the PA of 140 produced a rise of about 10.5% in indicated thermal efficiency (ITE) and 3% rise in peak heat release rate (HRR) with a compromise of 10.7% higher NOx emissions than that of the base case.