Options
Mallikarjuna J M
Loading...
Preferred name
Mallikarjuna J M
Official Name
Mallikarjuna J M
Alternative Name
Mallikarjuna, Jm
Mallikarjuna, J. M.
Mallikarjuna, Jawali Maharudrappa
Mallikarjuna, Jawali Maharudrppa
Main Affiliation
Email
ORCID
Scopus Author ID
Researcher ID
Google Scholar ID
2 results
Now showing 1 - 2 of 2
- PublicationEffect of Fuel Injection Pressure on Mixture Stratification in a GDI Engine - A CFD Analysis(08-10-2017)
;Saw, Om Prakash ;Karaya, YashasThe mixture formation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, piston profile is such that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In these engines, fuel injection pressure and timing play an important role in creating a combustible mixture near the spark plug. Therefore, in this study, an attempt has been made to understand the effect of fuel injection pressure with single and split injection strategy on the mixture formation in a four-stroke, wall-guided GDI engine operating under stratified conditions by using computational fluid dynamics (CFD) analysis. Four fuel injection pressures viz., 90, 120, 150 and 180 bar are considered for the analysis. All the CFD simulations are carried out at the engine speed of 2000 rev/min., compression ratio of 11.5, with the overall equivalence ratio of about 0.65. The fuel injection and spark timings are maintained at 605 and 705 CADs respectively. In this study, the effect of fuel injection pressure on mixture stratification is carried out by a new parameter called "Stratification Index". It is found that, at the time of the spark, with single fuel injection, with the fuel injection pressure of 180 bar, proper mixture stratification is produced. But, with split injection mode, at all the fuel injection pressures considered, a nearly homogeneous mixture is produced. Also in the single fuel injection cases, with the fuel injection pressures of 120, 150 and 180 bar, the peak in-cylinder pressures are higher by about 4.6, 14.9 and 19.6%; and 1.5, 3.7 and 4.3% respectively, compared to that of 90 bar fuel injection pressure. - PublicationEffects of Cylinder Head Geometry on Mixture Stratification, Combustion and Emissions in a GDI Engine - A CFD Analysis(15-01-2019)
;Saw, Om Prakash ;Addepalli, Srinivasa KrishnaPreparation of air-fuel mixture and its stratification, plays the key role to determine the combustion and emission characteristics in a gasoline direct injection (GDI) engine working in stratified conditions. The mixture stratification is mainly influenced by the in-cylinder flow structure, which mainly relies upon engine geometry i.e. cylinder head, intake port configuration, piston profile etc. Hence in the present analysis, authors have attempted to comprehend the effect of cylinder head geometry on the mixture stratification, combustion and emission characteristics of a GDI engine. The computational fluid dynamics (CFD) analysis is carried out on a single-cylinder, naturally-aspirated four-stroke GDI engine having a pentroof shaped cylinder head. The analysis is carried out at four pentroof angles (PA) viz., 80 (base case), 140, 200 and 250 with the axis of the cylinder. The entire CFD simulations are performed at the engine speed of 2000 rev/min., and the overall equivalence ratio (ER) of 0.75. Finally, it is observed that the PA of 140 produced a rise of about 10.5% in indicated thermal efficiency (ITE) and 3% rise in peak heat release rate (HRR) with a compromise of 10.7% higher NOx emissions than that of the base case.