Options
Anju Chadha
Loading...
Preferred name
Anju Chadha
Official Name
Anju Chadha
Alternative Name
Chadha, A.
Chadha, Anju
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
7 results
Now showing 1 - 7 of 7
- PublicationBiocatalytic deracemisation of aliphatic β-hydroxy esters: Improving the enantioselectivity by optimisation of reaction parameters(01-02-2015)
;Venkataraman, SowmyalakshmiOptically pure aliphatic β-hydroxy esters were prepared from their racemates by deracemisation using the biocatalyst Candida parapsilosis ATCC 7330. High optical purity (up to >99 %) and good yields (up to 71 %) of the product secondary alcohols were obtained. This study highlights the importance of optimization of reaction conditions using ethyl-3-hydroxybutanoate as the model substrate to improve the enantioselectivity (enantiomeric excess from 9 to 98 %). The present study emphasises the broad substrate scope of the biocatalyst towards deracemisation. This is the first report of Candida parapsilosis ATCC 7330-mediated deracemisation of various alkyl-3-hydroxybutanoates to produce either the (R)-enantiomers (methyl, ethyl, propyl, butyl, t-butyl, allyl-3-hydroxybutanoates) or (S)-enantiomers (pentyl, iso-amyl and iso-propyl-3-hydroxybutanoates). - PublicationWhole Cells Mediated Biocatalytic Reduction of Alpha-Keto Esters: Preparation of Optically Enriched Alkyl 2-hydroxypropanoates(20-06-2022)
;Venkataraman, SowmyalakshmiBiocatalytic reduction of alkyl 2-oxopropanoates were carried out by utilizing the whole cells of Candida parapsilosis ATCC 7330 to form the optically enriched alkyl 2-hydroxypropanoates with good enantiomeric excess (ee) (≤91%) and isolated yields (≤68%). Enantiomerically enriched (S)-ethyl 3-bromo-2-hydroxypropanoate thus synthesized by biocatalytic reduction of ethyl 3-bromo-2-oxopropanoate is presented in this study for the first time in water under ambient reaction conditions in a reaction time of 4 h which is considerably less than earlier reported procedures. - PublicationDirect observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies(14-10-2016)
;Venkataraman, Sowmyalakshmi ;Narayan, ShobaConfocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC. - PublicationCandida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions(01-10-2016)
; ;Venkataraman, Sowmyalakshmi ;Preetha, RadhakrishnanPadhi, Santosh KumarThis review highlights the importance of the biocatalyst, Candida parapsilosis for oxidation and reduction reactions of organic compounds and establishes its versatility to generate a variety of chiral synthons. Appropriately designed reactions using C. parapsilosis effect efficient catalysis of organic transformations such as deracemization, enantioselective reduction of prochiral ketones, imines, and kinetic resolution of racemic alcohols via selective oxidation. This review includes the details of these biotransformations, catalyzed by whole cells (wild type and recombinant strains), purified enzymes (oxidoreductases) and immobilized whole cells of C. parapsilosis. The review presents a bioorganic perspective as it discusses the chemo, regio and stereoselectivity of the biocatalyst along with the structure of the substrates and optical purity of the products. Fermentation scale biocatalysis using whole cells of C. parapsilosis for several biotransformations to synthesize important chiral synthons/industrial chemicals is included. A comparison of C. parapsilosis with other whole cell biocatalysts for biocatalytic deracemization and asymmetric reduction of carbonyl and imine groups in the synthesis of a variety of enantiopure products is presented which will provide a basis for the choice of a biocatalyst for a desired organic transformation. Thus, a wholesome perspective on the present status of C. parapsilosis mediated organic transformations and design of new reactions which can be considered for large scale operations is provided. Taken together, C. parapsilosis can now be considered a ‘reagent’ for the organic transformations discussed here. - PublicationAsymmetric reduction of alkyl-3-oxobutanoates by Candida parapsilosis ATCC 7330: Insights into solvent and substrate optimisation of the biocatalytic reaction(01-10-2013)
;Venkataraman, Sowmyalakshmi ;Roy, Rony K.Asymmetric reduction of alkyl-3-oxobutanoates mediated by Candida parapsilosis ATCC 7330 resulted in optically pure alkyl-3-hydroxybutanoates in good yields (up to 72 %) and excellent enantiomeric excess (up to >99 %). A detailed and systematic optimisation study was necessary and was carried out to avoid the undesired transesterification reaction during the course of asymmetric reduction. Under optimised conditions, the (S)-alkyl hydroxyesters were produced predominantly except for the methyl ester which formed the (R)-enantiomer. To the best of our knowledge, the biocatalytic asymmetric reduction of isoamyl-3-oxobutanoate to (S)-isoamyl-3-hydroxybutanoate is reported here for the first time. © 2013 Springer Science+Business Media New York. - PublicationEnantio- & chemo-selective preparation of enantiomerically enriched aliphatic nitro alcohols using Candida parapsilosis ATCC 7330(21-08-2015)
;Venkataraman, SowmyalakshmiEnantiomerically pure β- and γ-nitro alcohols were prepared from their respective nitro ketones by asymmetric reduction mediated by the biocatalyst, Candida parapsilosis ATCC 7330 under optimized reaction conditions (ee up to >99%; yields up to 76%). This biocatalyst exhibits high chemoselectivity and reduces the keto group in preference to nitro group along with good enantioselectivity to produce enantiomerically enriched nitro alkanols. The asymmetric reduction of aliphatic nitro ketones was carried out in water with ethanol as cosolvent and glucose as cosubstrate using the whole cells of Candida parapsilosis ATCC 7330 in much lesser time (4 h). For the first time, the biocatalytic asymmetric reduction of the following ketones is reported here: 1-nitro-butan-2-one, 1-nitro-pentan-2-one, 3-methyl-1-nitro-butan-2-one and 1-cyclohexyl-2-nitroethanone to produce (R)-alcohols [ee up to 79%, yield up to 74%] and 1-nitro-hexan-2-one and 1-nitro-heptan-2-one to produce (S)-alcohols [ee up to 81%, yield up to 76%]. - PublicationPreparation of enantiomerically enriched (S)-ethyl 3-hydroxy 4,4,4-trifluorobutanoate using whole cells of Candida parapsilosis ATCC 7330(01-01-2015)
;Venkataraman, SowmyalakshmiOptically pure (S)-ethyl 3-hydroxy 4,4,4-trifluorobutanoate was prepared using the biocatalyst Candida parapsilosis ATCC 7330 by deracemisation of the racemic alcohol ester in high optical purity (96%) and yield (65%) and by asymmetric reduction from its prochiral ketone (ee up to 84% and yield 60%) under different reaction conditions. This study highlights the possibility of using the same biocatalyst to produce (S)-ethyl 3-hydroxy 4,4,4-trifluorobutanoate using different strategies.