Options
Anju Chadha
Loading...
Preferred name
Anju Chadha
Official Name
Anju Chadha
Alternative Name
Chadha, A.
Chadha, Anju
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
3 results
Now showing 1 - 3 of 3
- PublicationPackaged bulk micromachined triglyceride biosensor(03-05-2010)
;Mohanasundaram, S. V. ;Mercy, S. ;Harikrishna, P. V. ;Rani, Kailash; Estimation of triglyceride concentration is important for the health and food industries. Use of solid state biosensors like Electrolyte Insulator Semiconductor Capacitors (EISCAP) ensures ease in operation with good accuracy and sensitivity when compared to conventional sensors. In this paper we report on packaging of miniaturized EISCAP sensors on silicon. The packaging involves glass to silicon bonding using adhesive. Since this kind of packaging is done at room temperature, it cannot damage the thin dielectric layers on the silicon wafer unlike the high temperature anodic bonding technique and can be used for sensors with immobilized enzyme without denaturing the enzyme. The packaging also involves a teflon capping arrangement which helps in easy handling of the bio-analyte solutions. The capping solves two problems. Firstly, it helps in the immobilization process where it ensures the enzyme immobilization happens only on one pit and secondly it helps with easy transport of the bio-analyte into the sensor pit for measurements. © 2010 Copyright SPIE - The International Society for Optical Engineering. - PublicationComparison of a potentiometric and a micromechanical triglyceride biosensor(01-01-2009)
;Fernandez, Renny Edwin ;Hareesh, Vemulachedu; Sensitive biosensors for detection of triglyceride concentration are important. In this paper we report on two types of silicon based triglyceride sensors: an electrolyte-insulator-semiconductor capacitor (EISCAP) which is a potentiometric device and a polysilicon microcantilever. The detection principle for both sensors is based on the enzymatic hydrolysis of triglyceride though the sensing mechanisms are different: electronic for the EISCAP and mechanical for the microcantilever. The characteristics and performances of the two sensors are critically compared. The EISCAP sensor necessitates the presence of a buffer for stable measurements which limits the sensitivity of the sensor at low concentrations of the bioanalyte to 1 mM. The cantilever sensor works without a buffer which improves the lower level of sensitivity to 10 μm. Both sensors are found to give reproducible and reliable results. © 2008 Elsevier B.V. All rights reserved. - PublicationStudies on cantilever based triglyceride biosensor(01-12-2007)
;Fernandez, Renny Edwin ;Soma Sekhar, B. V.; We report detection of micromolar levels of triglycerides using surface micromachined polysilicon cantilever beams. Enzymatic hydrolysis of triglycerides produces glycerol which alters the viscosity and density of the solution. This affects the dynamic properties of cantilever beams immersed in the solution. The change in the resonance frequency of the cantilever beams in the solution is measured using Doppler Vibrometry and the concentration of triglyceride is determined by comparing with a predetermined calibration plot. © 2007 IEEE.