Options
Madhulika Dixit
Loading...
Preferred name
Madhulika Dixit
Official Name
Madhulika Dixit
Alternative Name
Dixit, M.
Dixit, Madhulika
Main Affiliation
Email
Scopus Author ID
Google Scholar ID
1 results
Now showing 1 - 1 of 1
- PublicationCatestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway(01-08-2016)
;Kiranmayi, Malapaka ;Chirasani, Venkat R. ;Allu, Prasanna K.R. ;Subramanian, Lakshmi ;Martelli, Elizabeth E. ;Sahu, Bhavani S. ;Vishnuprabu, Durairajpandian ;Kumaragurubaran, Rathnakumar ;Sharma, Saurabh ;Bodhini, Dhanasekaran; ;Munirajan, Arasambattu K. ;Khullar, Madhu ;Radha, Venkatesan ;Mohan, Viswanathan ;Mullasari, Ajit S. ;Prasad, Sathyamangla V.Naga; Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios: 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with β-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser peptide with ADRB2 as compared with CST-WT.