Now showing 1 - 3 of 3
  • Placeholder Image
    Publication
    Roll-over shape of a prosthetic foot: a finite element evaluation and experimental validation
    (01-10-2020)
    Balaramakrishnan, Thirunindravur Mannan
    ;
    ;
    Prosthetic feet have generally been designed experimentally by adopting a trial-and-error technique. The objective of this research is to introduce a novel numerical approach for the a priori evaluation of the roll-over shape (ROS) of a prosthetic foot for application in its systematic design and development. The ROS was achieved numerically by employing a non-linear finite element model incorporating the augmented Lagrangian and multi-point constraint contact formulations, a hyperelastic material model and a higher-order strain definition. The Ottobock Solid Ankle Cushion Heel (SACH) foot was chosen to experimentally validate the numerical model. The geometry of the foot was evaluated from optical scans, and the material properties were obtained from uniaxial tensile, shear and volumetric compression tests. A new setup was designed for an improved experimental determination of the ROS, with the inclusion of an extended moment arm and variable loading. Error analysis of the radius of curvature of the ROS between the numerical and experimental results showed the percentage error to be 7.52%, thereby establishing the validity of the model. A numerical design model of this kind can be utilised to vary the input design parameters to arrive at a prosthetic foot with specified performance characteristics effectively and economically. [Figure not available: see fulltext.].
  • Placeholder Image
    Publication
    Biomechanical design framework for prosthetic feet: Experimentally validated non-linear finite element procedure
    (01-06-2021)
    Balaramakrishnan, T. M.
    ;
    ;
    Performance evaluation of prosthetic feet during their design is typically performed experimentally, which may be time and cost intensive. This work presents a first-of-its-kind application of a numerical procedure for the a priori determination of various stance phase biomechanical parameters of a prosthetic foot, such as its roll-over characteristics, centre of pressure trajectory, ankle flexion moment arm and ankle range of motion, to aid in its design. The numerical procedure is based on finite element analysis, which includes geometric, material and contact non-linearity. Boundary conditions emulating the rocker-based inverted pendulum model were employed to evaluate the biomechanical parameters. The finite element model was validated by employing an inverted pendulum-based apparatus using the structurally complex Ottobock Solid Ankle Cushioned Heel (SACH) prosthetic foot as the test device. A comparison of the numerical and experimental results showed low magnitude of errors. For example, the percentage error of the radius of curvature of the roll-over shape was ~0.1%. The differences found appear to be clinically insignificant, which substantiates the reliability of the model. The proposed numerical model can be employed to obtain detailed a priori insights into the biomechanical parameters influencing a prosthetic foot's characteristics during gait, which can better inform the design, analysis and prescription of prosthetic feet.
  • Placeholder Image
    Publication
    Design of a biomimetic sach foot: An experimentally verified finite element approach
    (01-01-2020)
    Mannan Balaramakrishnan, Thirunindravur
    ;
    ;
    The Solid Ankle Cushioned Heel (SACH) foot is a commonly prescribed prosthetic foot for the rehabilitation of lower limb amputees. From the viewpoint of its biomechanical performance, the foot is known to cause drop-off effect and asymmetry in amputee gait. Therefore, the objective of this work is to improvise the effective foot length ratio (EFLR) and the progression of the centre of pressure (CoP) of the SACH foot by providing a novel design approach that utilizes finite element analysis. Boundary conditions employed for evaluating the roll-over characteristics of prosthetic feet were numerically incorporated in this work. The non-linear mechanical behavior of the foot was included with the incorporation of large deformation, a hyperelastic material model and the Augmented Lagrangian contact formulation. Outcomes from the simulations were experimentally verified using an inverted pendulum-like apparatus, thereby substantiating the numerical approach. The design process of the SACH foot involved the modification of the elastic modulus of its components for enhancing the parameters of interest. Results obtained presented a 5.07% increase in the EFLR and a 9.29% increase in the anteroposterior progression of the CoP, which may improve amputee stability. The design solution presented may support the large user base of the SACH foot towards achieving enhanced gait characteristics during ambulation. Moreover, this work successfully demonstrates a novel design procedure for a prosthetic foot through an effective numerical implementation.