Now showing 1 - 3 of 3
  • Placeholder Image
    Publication
    Apriori rule-based in-app ad selection online algorithm for improving Supply-Side Platform revenues
    (01-07-2017)
    Mukherjee, Anik
    ;
    ;
    Dutta, Kaushik
    Today, smartphone-based in-app advertisement forms a substantial portion of the online advertising market. In-app publishers go through ad-space aggregators known as Supply-Side Platforms (SSPs), who, in turn, act as intermediaries for ad-agency aggregators known as demand-side platforms. The SSPs face the twin issue of making ad placement decisions within an order of milliseconds, even though their revenue streams can be optimized only by a careful selection of ads that elicit appropriate user responses regarding impressions, clicks, and conversions. This article considers the SSP's perspective and presents an online algorithm that balances these two issues. Our experimental results indicate that the decision-making time generally ranges between 20 ms and 50 ms and accuracy from 1% to 10%. Further, we conduct statistical analysis comparing the theoretical complexity of the online algorithm with its empirical performance. Empirically, we observe that the time is directly proportional to the number of incoming ads and the number of online rules.
  • Placeholder Image
    Publication
    Time-preference-based on-spot bundled cloud-service provisioning
    (01-12-2021)
    Mukherjee, Anik
    ;
    ;
    Dutta, Kaushik
    The cloud computing spot instance is one offering that vendors are leveraging to provide differentiated service to an expanding pay-per-use computing market. Spot instances have cost advantages, albeit at a trade-off of interruptions that can occur when the user's bid price falls below the spot price. The interruptions are often exacerbated since customers often require resources in bundles. For these reasons, customers might have to wait for a long time before their jobs are completed. In this paper, we propose a behavioral-economic model in the form of time-preference-based bids, wherein users are willing to use and bid for services at other times if the vendor cannot provide the resources at the preferred time. Given such bids, we consider the problem of provisioning for such service requests. We develop a time-preference-based optimization model. Since the optimization model is NP-Hard, we develop rule-based genetic algorithms. We have obtained very encouraging results with respect to standard commercial solver as a benchmark. In turn, our results provide evidence for the viability of our approach for online service-provisioning problems.
  • Placeholder Image
    Publication