Options
Ramakrishnan Swaminathan
Loading...
Preferred name
Ramakrishnan Swaminathan
Official Name
Ramakrishnan Swaminathan
Alternative Name
Swaminathan, R.
Ramakrishnan, Swaminathan
swaminathan, Ramakrishanan
Sa, Ramakrishnan
Swaminathan, Ramakrishnan
Ramakrishnan, S.
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
3 results
Now showing 1 - 3 of 3
- PublicationAnalysis of surface EMG signals in biceps curls using maximum singular value estimation(02-12-2014)
;Venugopal, G.In this work, an attempt has been made to analyze surface electromyography signals (sEMG) by estimating maximum singular value. sEMG signals are recorded from biceps brachii muscles of 50 healthy volunteers during repetitive elbow flexion and extension exercise. Maximum singular values are estimated from the signals. The results show a decrease in MSV at the point of first muscle discomfort experienced by subjects. For most of the subjects, the point of first discomfort occur in fourth and fifth regions of the time axis. It appears that this method can be used to analyze progress of muscle condition towards fatigue. - PublicationAnalysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals(01-01-2016)
;Karthick, P. A. ;Venugopal, G.Analysis of neuromuscular fatigue finds various applications ranging from clinical studies to biomechanics. Surface electromyography (sEMG) signals are widely used for these studies due to its non-invasiveness. During cyclic dynamic contractions, these signals are nonstationary and cyclostationary. In recent years, several nonstationary methods have been employed for the muscle fatigue analysis. However, cyclostationary based approach is not well established for the assessment of muscle fatigue. In this work, cyclostationarity associated with the biceps brachii muscle fatigue progression is analyzed using sEMG signals and Spectral Correlation Density (SCD) functions. Signals are recorded from fifty healthy adult volunteers during dynamic contractions under a prescribed protocol. These signals are preprocessed and are divided into three segments, namely, non-fatigue, first muscle discomfort and fatigue zones. Then SCD is estimated using fast Fourier transform accumulation method. Further, Cyclic Frequency Spectral Density (CFSD) is calculated from the SCD spectrum. Two features, namely, cyclic frequency spectral area (CFSA) and cyclic frequency spectral entropy (CFSE) are proposed to study the progression of muscle fatigue. Additionally, degree of cyclostationarity (DCS) is computed to quantify the amount of cyclostationarity present in the signals. Results show that there is a progressive increase in cyclostationary during the progression of muscle fatigue. CFSA shows an increasing trend in muscle fatiguing contraction. However, CFSE shows a decreasing trend. It is observed that when the muscle progresses from non-fatigue to fatigue condition, the mean DCS of fifty subjects increases from 0.016 to 0.99. All the extracted features found to be distinct and statistically significant in the three zones of muscle contraction (p < 0.05). It appears that these SCD features could be useful in the automated analysis of sEMG signals for different neuromuscular conditions. - PublicationAnalysis of surface EMG signals under fatigue and non-fatigue conditions using B-distribution based quadratic time frequency distribution(25-04-2015)
;Karthick, P. A. ;Venugopal, G.In this paper, an attempt has been made to analyze surface electromyography (sEMG) signals under non-fatigue and fatigue conditions using time-frequency based features. The sEMG signals are recorded from biceps brachii muscle of 50 healthy volunteers under well-defined protocol. The pre-processed signals are divided into six equal epochs. The first and last segments are considered as non-fatigue and fatigue zones respectively. Further, these signals are subjected to B-distribution based quadratic time-frequency distribution (TFD). Time frequency based features such as instantaneous median frequency (IMDF) and instantaneous mean frequency (IMNF) are extracted. The expression of spectral entropy is modified to obtain instantaneous spectral entropy (ISPEn) from the time-frequency spectrum. The results show that all the extracted features are distinct in both conditions. It is also observed that the values of all features are higher in non-fatigue zone compared to fatigue condition. It appears that this method is useful in analysing various neuromuscular conditions using sEMG signals.