Options
Vagesh D Narasimhamurthy
Loading...
Preferred name
Vagesh D Narasimhamurthy
Official Name
Vagesh D Narasimhamurthy
Alternative Name
Narasimhamurthy, V. D.
Narasimhamurthy, Vagesh D.
Main Affiliation
Email
ORCID
Scopus Author ID
Researcher ID
Google Scholar ID
2 results
Now showing 1 - 2 of 2
- PublicationDNS of an Oscillating Shear Layer Between Two Parallel Couette Flows(01-01-2021)
;Manohar Teja, KalluriA non-planar mixing layer observed between parallel Couette flows by Narasimhamurthy et al. (Phys Rev E 85:036,302, 2012) is considered. Direct numerical simulation is chosen, and simulations are run in order to determine the critical Reynolds number at which the interface between the co-flowing laminar and non-laminar flow becomes unstable exhibiting a meandering motion. The necessary conditions required to trigger the shear-layer instability were also discussed. Different combinations of Reynolds numbers are chosen keeping the Reynolds number ratio between the laminar and non-laminar flows as constant. Preliminary results indicate that the onset of instability occurs, and a meandering motion is observed at the interface when Reynolds number for the non-laminar flow corresponds to 650. - PublicationPerforated bluff-body wake simulations: Influence of aspect ratio(04-02-2019)
;Singh, AbhinavParallel computations of flow past a perforated plate of porosity 25% at Reynolds number 250 (based on plate width, d and inflow velocity, Uo) is carried out. The effect of aspect ratio is studied with different span-wise lengths of the domain (1d, 3d and 6d). Present results revealed that an aspect ratio of 6d is required to capture the transient wake dynamics. It was found that statistical quantities stemming from aspect ratio 3d and 6d cases agree with each other, though the dynamical behavior of the wake is very different. The signature period doubling effects associated with short constrained domains were visible in the 1d and 3d aspect ratio cases. Enforcing periodic boundary condition along the short span-wise domains may thus adversely affect the flow.