Options
Ilaksh Adlakha
Loading...
Preferred name
Ilaksh Adlakha
Alternative Name
Adlakha, I.
Adlakha, Ilaksh
Main Affiliation
ORCID
Scopus Author ID
Google Scholar ID
4 results
Now showing 1 - 4 of 4
- PublicationFirst-Principles Investigations into the Electrochemical Behavior of Mg-Based Intermetallics(01-01-2023)
;Mishra, Pragyandipta ;Kumar, Pranav; Magnesium alloys have drawn considerable attention for several engineering applications, owing to their excellent properties like low density and high specific strength. The room temperature ductility and mechanical properties of Mg are usually enhanced by alloying additions. Based on the thermomechanical processing, the presence of critical concentration of alloying element typically leads to the formation of stable binary intermetallic phases with Mg, thereby distinctly altering the microscopic electrochemical properties of the alloy. However, the secondary intermetallic phases in Mg alloys are typically of sub-micron size; thus, accurate electrochemical characterization is a challenging issue. Using first-principles calculations, the electrochemical behavior of various Mg intermetallics was comprehensively quantified. The electrochemical polarization behavior of the intermetallics was strongly dependent on surface-mediated properties and chemical bonding characteristics. Finally, the computational framework provides an accurate screening tool that can assist in alloy design and development of coatings. - PublicationSurface reconstruction in core@shell nanoalloys: Interplay between size and strain(01-08-2022)
;Settem, Manoj ;Kumar, Pranav; Shell structure in core@shell nanoalloys is studied where the core comprises of smaller atoms and covered by a thin shell with larger atoms. Mismatch strain, due to the size difference between core and shell atoms, plays a key role in determining the shell arrangement. Binary alloy systems having a wide range of lattice mismatch are considered which include Ni-Ag, Co-Ag, Cu-Ag, Co-Pt, Ni-Pd, Rh-Au, and Ni-Cu. Beginning from very small sizes, transformations in the shell structure are sketched out up to large sizes of ∼ 12 nm. These changes are accompanied by reconstruction of {100} facets in the shell to pseudo hexagonal (p-Hex) surfaces. Results show that p-Hex reconstruction occurs in specific size windows. The stability regime and the fraction of p-Hex surfaces is strongly dependent on the lattice mismatch. Comparison of p-Hex and {111} surfaces reveal significant atomic pressure differences. Finally, shells that are thicker than a monolayer are considered and it is found that p-Hex reconstruction is favored in thicker shells as well. - PublicationFirst-principles prediction of electrochemical polarization and mechanical behavior in Mg based intermetallics(01-11-2022)
;Mishra, Pragyandipta ;Kumar, Pranav; Here the electrochemical and mechanical behavior for different Mg based intermetallics (Mg17Al12, MgZn2, Mg3Nd, Mg2Si, Mg24Y5, Mg2Ca, Mg12Ce, Mg12La, Mg2Cu, and Mg2Sn) was comprehensively quantified. First, a robust thermodynamic framework was developed that utilized first-principles calculations to accurately predict the electrochemical polarization behavior of the Mg based intermetallics. Based on the predicted corrosion potential, apart from Mg2Ca which behaves as an anode to the Mg matrix, the rest of the Mg based intermetallics act as a cathode. The electrochemical polarization behavior of the intermetallics was strongly dependent on surface mediated properties (surface energy and work function) and chemical bonding characteristics. Furthermore, the electrochemical behavior was sensitive to the atomic arrangement on the surface. Based on Bader analysis, it was found that the direction of electron flow between the constituent elements of the intermetallic (towards or away from Mg) strongly influenced the electrochemical behavior. The accurate quantifications of elastic constants for the Mg based intermetallics conclusively clarified the mechanical behavior of Mg2Ca and Mg2Cu. Finally, the computational framework provides an accurate screening tool that can assist in alloy design and development of coatings. - PublicationEffect of hydrogen on plasticity of α-Fe: A multi-scale assessment(01-06-2023)
;Kumar, Pranav ;Ludhwani, Mohit M. ;Das, Sambit ;Gavini, Vikram; A multi-scale study was carried out to quantify the effect of interstitial hydrogen concentration on plasticity in α-Fe. In this work, the influence of hydrogen on the screw dislocation glide behavior was examined across several length-scales. The insights obtained were integrated to provide an accurate continuum description for the effect of hydrogen on the dislocation based plasticity in polycrystalline α-Fe. At the outset of this work, a new Fe[sbnd]H interatomic potential was formulated that enhanced the atomistic estimation of the variation in dislocation glide behavior in presence of hydrogen. Next, the dislocation core reconstruction observed due to the addition of hydrogen using atomistic simulations was validated with the help of large-scale DFT calculations based on the DFT-FE framework. Several atomistic simulations were carried out to comprehensively quantify the effect of hydrogen on the non-Schmid behavior exhibited during the dislocation glide in α-Fe. Finally, crystal plasticity simulations were carried out to understand the effect of hydrogen on the meso-scale deformation behavior of polycrystalline α-Fe.