Now showing 1 - 10 of 41
  • Placeholder Image
    Publication
    Influence of asymmetric potential on multiple solutions of the bi-stable piezoelectric harvester
    (01-07-2022)
    Giri, Abhijeet M.
    ;
    ;
    Arockiarajan, A.
    Influence of potential well asymmetry on the dynamics of magneto-elastic and piezo-magneto-elastic harvesters with symmetric and asymmetric bi-stable potential wells are investigated in this article. An autonomous algorithm is developed which categorizes the response obtained under different harmonic excitations and initial conditions into seven unique-primary attractor solutions. Influence of two small and two moderate levels of asymmetry in potential well is visualized at the different excitation frequencies through the attractor basins and largest Lyapunov exponent of the solutions. The results of the numerical investigations prove that small and moderate levels of asymmetry considered in this investigations have insignificant influence on the desirable cross-well periodic solution. Also, under small asymmetry levels, the cross-well periodic solutions preferably transform into other cross-well solutions only, viz. cross-well subharmonic and chaotic solutions, if attainable. In addition, these asymmetry levels are beneficial in restraining the chaos-prone solutions and even boost up the basin areas of the cross-well periodic solution. A reduction in chaos-prone responses not only implies a simplified and efficient energy harvesting circuitry, but also results in an improved life expectancy of the transduction material as the instances of stress reversals are reduced.
  • Placeholder Image
    Publication
    Modeling of integrated shape memory alloy and Macro-Fiber Composite actuated trailing edge
    (01-08-2020)
    Mukherjee, Aghna
    ;
    ;
    Arockiarajan, A.
    Owing to their high energy densities, smart materials like shape memory alloys (SMAs), Macro-Fiber Composites (MFCs) and, electroactive polymers (EAPs) have massive potential as actuators in wing morphing applications. In this article, a detailed numerical model is developed for the shape prediction of an elastic base that is actuated by a combination of a shape memory alloy (SMA) wire and a Macro-Fiber Composite (MFC) bimorph. It has been demonstrated using the model that it is possible to achieve large deflections at low frequencies by virtue of the phase transformations in the SMA wire and rapid actuation with small deflections due to the MFC bimorph. In the developed scheme, the elastic base is modeled using non-linear Euler-Bernoulli beam theory. The influence of the non-linear hysteresis in the SMA wire and the linear actuation characteristics of the MFC is studied by incorporating thermo-mechanical and electro-mechanical constitutive behavior into the non-linear beam theory. The system of coupled equations hence obtained, is solved iteratively to obtain the deflected shape of the elastic base. The results from the developed numerical scheme are validated against the previously available studies in the literature and experiments. Additionally, the synergistic advantage of using the two actuators together has been shown through experiments. As an illustration, a smart trailing edge camber morphing concept is developed by integrating the flexible elastic structure along with the two smart actuators to a NACA 0012 airfoil as the trailing edge.
  • Placeholder Image
    Publication
    Design of a Nonlinear Energy Harvesting Dynamic Vibration Absorber
    (01-01-2021)
    Bhattacharyya, Soumi
    ;
    The study focuses on the design of an energy harvesting nonlinear dynamic vibration absorber (DVA) for possible vibration attenuation and energy generation. As an application vibration mitigation of a base-excited single degree of freedom (SDOF) system is considered. Conventional DVAs are widely used as vibration control devices that undergo large displacements in order to dissipate the energy from the primary structure. For an energy harvester higher the vibration higher is the energy generated. Therefore, if an energy harvester is attached to the DVA, the primary structure DVA interaction can be used for dual purposes. In this study, a duffing-type nonlinear DVA system with a piezo patch is proposed as energy harvesting nonlinear DVA to mitigate the vibration and to obtain electricity. The modeling of the total system is carried out considering the electromechanical interactions between the harvester-DVA and structural system. The formulation is done in time domain and a simulation study is carried out for harmonic base excitation to understand the effect of nonlinearity in voltage generation. A frequency sweep study is carried out to locate the frequency band in which the system responses are consistently higher. Further, the important design parameters are identified. A parametric study to obtain optimal design parameters is also reported. The advantages of nonlinear energy harvesting DVA over the linear ones are many. A nonlinear harvester provides power over a broad range of frequencies and, therefore would be able to dissipate energy from the primary structure over wideband excitations. Finally, the performance of the designed nonlinear DVA system with harvester is examined for vibration mitigation of SDOF primary system.
  • Placeholder Image
    Publication
    Uncertainty quantification of bladed disc systems using data driven stochastic reduced order models
    (15-01-2021)
    Kumar, Rahul
    ;
    ;
    Jeyaraman, Sankarkumar
    ;
    This study focusses on the development of stochastic reduced order model for probabilistic characterisation of bladed disc systems with random spatial inhomogeneities. High fidelity finite element modelling is used to mathematically model the system. A two step reduction strategy is applied involving reduction in the state space dimension and reduction in the stochastic dimensions. Information of the spatial inhomogeneities are assumed to be available from limited in situ measurements across the spatial extent and are modelled as non-Gaussian random fields. The stochastic version of the finite element matrices are developed using a polynomial chaos based framework, which optimizes the stochastic dimensionality of the problem. The uncertainties in the input propagates through the system into the response, which are also random. Surrogate models for these response quantities are obtained as PCE and are constructed using the method of stochastic collocations. Challenges involved in application of PCE on complex geometrically irregular spatial domains are addressed. The efficacy of the proposed framework is demonstrated through two numerical examples -an academic bladed disc system and an industrial turbine rotor blade.
  • Placeholder Image
    Publication
    Dynamics of symmetric and asymmetric potential well-based piezoelectric harvesters: A comprehensive review
    (01-10-2021)
    Giri, Abhijeet Madhukar
    ;
    ;
    Arockiarajan, Arunachalakasi
    Small and micro-scale energy harvesting is an essential and viable option for the powering of portable and maintenance free electronic devices, wireless sensor nodes, and similar applications. In this regard, piezoelectric harvesters have presented promising outcomes. This article provides a sequential, comprehensive, and informative survey of potential well based models and studies related to piezoelectric harvesters (PEH). Piezoelectric materials used for energy harvesting are discussed briefly, following which a non-dimensional generalized model is derived to set the discussion on a common platform. Dynamics of various potential well configurations are presented using the generalized model before discussing specific models and related studies. The survey is classified into symmetric and asymmetric potential well categories. Under the symmetric head, lumped and distributed parameter linear models and tuning methods for improving the broadband response are discussed. Subsequently, studies related to nonlinear mono-stable, bi-stable, and tri-stable potentials showing interwell, multi-periodic and chaotic oscillations with improved broadband response are discussed. The asymmetric section studies the influence of asymmetries on the performance of the mono-stable, bi-stable, and tri-stable configurations. Few other configurations outside the cantilever type PEH were mentioned, realizing the widespread research in this field. Important observations and future challenges for performance improvement are also discussed.
  • Placeholder Image
    Publication
    Design and conception of a trailing edge morphing wing concept with bistable composite skin
    (01-01-2020)
    Mukherjee, Aghna
    ;
    ; ;
    Arockiarajan, A.
    In the recent past, bistable laminates have been widely studied for their potential in wing morphing applications. The existence of multiple stable states makes them extremely viable as structural elements. However, for successful deployment, these laminates must be integrated into a larger mechanism. For integration, the bistable laminates are required to be clamped to a larger structure without the loss of bistability. In this work, an attempt has been made to understand the effect of integration (i.e., using different structural constraints and clamping) on the bistability and the snapthrough performance of a special class of hybrid bistable symmetric laminates (HBSLs). The structural analysis has been carried out using FEA software ABAQUS. Subsequently, a conceptual design of a morphing wing is proposed based on the insights gained from the numerical analysis that uses two HBSLs as skin with a corrugated core. Finally, using the analysis guidelines, two HBSL skins and a circular corrugated core are manufactured and integrated to show the possibility of using such bistable laminates as skin.
  • Placeholder Image
    Publication
    Stochastic reduced order modelling and analysis of rotating bladed discs
    (01-01-2022)
    Kumar, Rahul
    ;
    ;
    A computational finite-element (FE)-based technique is proposed for developing a stochastic reduced order model for rotating bladed disc with spatial random inhomogeneities. The spatial inhomogeneities imply the system to be randomly mistuned. The formulation assumes the availability of a high fidelity FE model for the tuned system. The corresponding FE matrices are antisymmetric on account of the Coriolis forces due to rotation. The spatial inhomogeneities, available from limited point measurements on the blades, are modelled as non-Gaussian random fields with arbitrary distributions. A low order stochastic computational model is developed by projecting the FE model onto a reduced dimensional state space defined in terms of specified observable nodal points and expressing the stochasticity through an arbitrary polynomial chaos (aPC) basis. This model enables probabilistic quantification of the variabilities in the system response and estimating failure probabilities. The methodology enables drastic reduction in the state space and stochastic dimensions, addresses the practical difficulties with having limited measurable data points, antisymmetric FE matrices, aPC representation in complex irregular geometries and carrying out probabilistic analyses on industrial systems, at significantly reduced computational costs. The methodology is illustrated through an academic rotor and an industrial rotor blade.
  • Placeholder Image
    Publication
    Broadband piezoelectric energy harvesting using an array of mistuned inverted cantilever beams
    (01-01-2020)
    Aravindan, M.
    ;
    An energy harvesting device built on the lines of capitalizing the linear resonance of the system works well only when the natural frequency is close to the excitation frequency. To overcome this limitation of the linear harvester, this work investigates the prospect of using an array of mistuned cantilevers for broadband energy harvesting. The common device configuration of inverted beams with tip masses has been adopted in this study. The considered system is highly nonlinear for tip masses beyond Euler buckling load, and it has two potential wells on either side of the unstable zero position. The non-linear characteristics of the harvester are studied as a preliminary investigation to identify the values of mistuning parameters used in the current work. Numerical simulations have been carried out to understand the influence of mistuning parameters such as length of the beams and tip masses on the frequency band of the harvester power. Comparative studies on the power bandwidth of array of mistuned linear and non-linear harvesters are performed. Observations show that an array of non-linear harvesters enhanced the frequency bandwidth of the power more than that of its linear counterpart.
  • Placeholder Image
    Publication
    A nonlinear hybrid energy harvester
    (01-01-2020)
    Rajarathinam, M.
    ;
    Malaji, P. V.
    ;
    This manuscript discusses a magnetically coupled nonlinear hybrid piezo-electromagnetic energy harvester under harmonic base motion. Linear energy harvester works optimally when the natural frequency of the harvester meets the resonating frequency, elsewhere harvested power falls drastically. Most of the ambient vibration sources are random in nature. Hence, considering the realistic application, narrowband linear vibration energy harvesters are inefficient. Alternatively, nonlinear energy harvesters are capable of producing the electrical power over a broad frequency range. Hence, to acquire the optimum power in the broader frequency range, a magnetically coupled hybrid piezo-electromagnetic energy harvester is developed. In this current work, a tip loaded unimorph piezo cantilever beam configuration is used to scavenge electrical energy from the strain developed in the piezoelectric patch and spring-magnetic mass attached to another end of the cantilever beam with solenoid arrangements are used to scavenge electrical energy from the relative motion between magnetic mass and solenoid. This hybrid harvester is coupled with magnetic oscillators to introduces nonlinearity in the developed harvester. This paper compares, the energy harvested from the hybrid harvester with that of conventional piezoelectric and electromagnetic harvesters for both linear and nonlinear systems.
  • Placeholder Image
    Publication
    Parametric Uncertainty and Random Excitation in Energy Harvesting Dynamic Vibration Absorber
    (01-03-2021)
    Rajarathinam, M.
    ;
    An energy harvesting dynamic vibration absorber (EHDVA) is studied to suppress undesirable vibrations in a host structure as well as to harvest electrical energy from vibrations using piezoelectric transduction. This work studies the feasibility of using vibration absorber for harvesting energy under random excitation and in presence of parametric uncertainties. A two degrees-of-freedom model is considered in the analytical formulation for the host along with the absorber. A separate equation is used for energy generation from piezoelectric material. Two studies are reported here: (i) with random excitation where the base input is considered to be Gaussian and (ii) parametric uncertainty is considered with harmonic excitation. Under random base excitation, the analytical results show that, with the proper selection of parameters, harvested electrical energy can be increased along with the reduction in vibration of the host structure. Graphs are reported showing tradeoff between harvested energy and vibration control. Whereas, Monte Carlo simulations are carried out to analyze the system with parametric uncertainty. This showed that the mean harvested power decreases with an increase in uncertainties in the natural frequency as well as damping ratio. In addition, optimal electrical parameters for obtaining maximum power for the case of uncertain parameters are also reported in this study.