Options
Shaikh Faruque Ali
Loading...
Preferred name
Shaikh Faruque Ali
Official Name
Shaikh Faruque Ali
Alternative Name
Faruque Ali, Shaikh
Ali, S. F.
Ali, S. Faruque
Ali, Shaikh Faruque
Main Affiliation
Email
ORCID
Scopus Author ID
Researcher ID
Google Scholar ID
7 results
Now showing 1 - 7 of 7
- PublicationDesign of a Nonlinear Energy Harvesting Dynamic Vibration Absorber(01-01-2021)
;Bhattacharyya, SoumiThe study focuses on the design of an energy harvesting nonlinear dynamic vibration absorber (DVA) for possible vibration attenuation and energy generation. As an application vibration mitigation of a base-excited single degree of freedom (SDOF) system is considered. Conventional DVAs are widely used as vibration control devices that undergo large displacements in order to dissipate the energy from the primary structure. For an energy harvester higher the vibration higher is the energy generated. Therefore, if an energy harvester is attached to the DVA, the primary structure DVA interaction can be used for dual purposes. In this study, a duffing-type nonlinear DVA system with a piezo patch is proposed as energy harvesting nonlinear DVA to mitigate the vibration and to obtain electricity. The modeling of the total system is carried out considering the electromechanical interactions between the harvester-DVA and structural system. The formulation is done in time domain and a simulation study is carried out for harmonic base excitation to understand the effect of nonlinearity in voltage generation. A frequency sweep study is carried out to locate the frequency band in which the system responses are consistently higher. Further, the important design parameters are identified. A parametric study to obtain optimal design parameters is also reported. The advantages of nonlinear energy harvesting DVA over the linear ones are many. A nonlinear harvester provides power over a broad range of frequencies and, therefore would be able to dissipate energy from the primary structure over wideband excitations. Finally, the performance of the designed nonlinear DVA system with harvester is examined for vibration mitigation of SDOF primary system. - PublicationBroadband piezoelectric energy harvesting using an array of mistuned inverted cantilever beams(01-01-2020)
;Aravindan, M.An energy harvesting device built on the lines of capitalizing the linear resonance of the system works well only when the natural frequency is close to the excitation frequency. To overcome this limitation of the linear harvester, this work investigates the prospect of using an array of mistuned cantilevers for broadband energy harvesting. The common device configuration of inverted beams with tip masses has been adopted in this study. The considered system is highly nonlinear for tip masses beyond Euler buckling load, and it has two potential wells on either side of the unstable zero position. The non-linear characteristics of the harvester are studied as a preliminary investigation to identify the values of mistuning parameters used in the current work. Numerical simulations have been carried out to understand the influence of mistuning parameters such as length of the beams and tip masses on the frequency band of the harvester power. Comparative studies on the power bandwidth of array of mistuned linear and non-linear harvesters are performed. Observations show that an array of non-linear harvesters enhanced the frequency bandwidth of the power more than that of its linear counterpart. - PublicationA nonlinear hybrid energy harvester(01-01-2020)
;Rajarathinam, M. ;Malaji, P. V.This manuscript discusses a magnetically coupled nonlinear hybrid piezo-electromagnetic energy harvester under harmonic base motion. Linear energy harvester works optimally when the natural frequency of the harvester meets the resonating frequency, elsewhere harvested power falls drastically. Most of the ambient vibration sources are random in nature. Hence, considering the realistic application, narrowband linear vibration energy harvesters are inefficient. Alternatively, nonlinear energy harvesters are capable of producing the electrical power over a broad frequency range. Hence, to acquire the optimum power in the broader frequency range, a magnetically coupled hybrid piezo-electromagnetic energy harvester is developed. In this current work, a tip loaded unimorph piezo cantilever beam configuration is used to scavenge electrical energy from the strain developed in the piezoelectric patch and spring-magnetic mass attached to another end of the cantilever beam with solenoid arrangements are used to scavenge electrical energy from the relative motion between magnetic mass and solenoid. This hybrid harvester is coupled with magnetic oscillators to introduces nonlinearity in the developed harvester. This paper compares, the energy harvested from the hybrid harvester with that of conventional piezoelectric and electromagnetic harvesters for both linear and nonlinear systems. - PublicationAnalysis of Stepped Beam Using Reduced Order Models(01-01-2021)
;Kumar, Rahul; Damage detection in complicated engineering systems from vibration measurements typically involves the use of algorithms that are built on the principles of bayesian dynamic state estimation. These methods invariably required the solution of the forward problem a fairly large number of times. For complex engineering systems that are numerically modeled using Finite Element (FE), this can be computationally intensive especially when a single FE run for the problem takes a large time. To alleviate this problem, there is a need for the development of Reduced Order Models (ROMs) that significantly reduce the computational cost associated with solving the forward problem, for a given measure without sacrificing the accuracy. The present study discusses three ROM methods with specific reference to a simple problem. These methods include well-known Component Mode Synthesis (CMS) and System Equivalent Reduction Expansion Process (SEREP) which are applicable only for linear systems, as well as Principal Component Analysis (PCA)—the method which is more general and can be used for nonlinear systems as well. A comparison of the performance of all these methods is carried out for a stepped beam. The FE based results obtained from the full model is treated as the benchmark. - PublicationAnalysis of tristable energy harvesters under random excitations(01-01-2020)
;Kumar, A.; Arockiarajan, A.This manuscript analyzes the performance of a tristable vibration energy harvester under Gaussian white noise excitation. Broadband vibration energy harvesting has attracted significant research attention and is targeted toward obtaining large power output over a wide range of frequencies. Nonlinearity can be introduced into vibration energy harvesting systems through multi-stability. In cantilever-type vibration energy harvesters, multi-stability could be achieved by the introduction of magnetic interactions. When two external magnets are used, the harvester can have up to three stable static equilibrium positions. The harvester with two stable states has been explored widely, both theoretically and experimentally. Recently, the harvester with three stable states is shown to perform better than its bistable counterpart in the presence of a linearly increasing harmonic sweep excitation. Ambient vibrations are random in nature, and the performance of tristable energy harvesters under such excitations needs to be studied. To begin with, we study the performance of tristable energy harvesters under Gaussian white noise excitation through numerical simulations. The simulations show that beyond a certain critical amplitude of excitation, the harvesters undergo inter-well oscillations and harvest more power. This implies that if the variance of the random ambient excitation is known, then the harvester could be optimized so that the mean harvested power is maximized. - PublicationDesign of a Flow Control Device Using a Special Class of Hybrid Symmetric Bistable Laminates in Clamped Boundary Condition(01-01-2021)
;Mukherjee, Aghna ;Mundwaik, Akash; Arockiarajan, ArunachalkasiIn this manuscript, a concept flow control valve is designed, exploiting the bistable characteristics of a special class of hybrid laminates made of glass epoxy and carbon epoxy prepregs. The principal structural element of the device is a hybrid bistable laminate, having a multi-section layup laid in a symmetric configuration. The thermal curing process responsible for the inherent bistability is simulated in ABAQUS(Formula Presented) and the equilibrium shapes hence obtained using the FEA scheme is validated against an existing semi-analytical technique based on the Rayleigh-Ritz minimization of potential functional. These multi-stable elements are then studied for their potential in controlling a flowing stream. Toward that, the snapping response of these laminates in a flow stream is analyzed using a combination of XFOIL and ABAQUS(Formula Presented). The pressure distribution on the laminate is estimated using XFOIL, which is an interactive program for analysis of subsonic isolated airfoils in viscous/inviscid low Reynolds number flow. The pressure distribution hence obtained is used to evaluate the load-displacement characteristics of the laminate using post-buckling regime analysis capabilities of ABAQUS(Formula Presented). Using these analysis tools, the design space is explored and the possibility of using the proposed bistable design elements for flow regulation is established. - PublicationEnergy harvesting from dynamic vibration pendulum absorber(01-01-2019)
;Malaji, P. V. ;Rajarathinam, M. ;Jaiswal, V.; Howard, I. M.Dynamic vibration absorbers (DVAs) have proven to be an effective passive technique to suppress device vibration, with many realistic implementations in structures, buildings, and machines. Vibration energy harvesting is a process used to convert unwanted vibrations of a host structure into electrical energy. In this paper, a harmonic single degree-of-freedom system is considered consisting of a pendulum absorber and electromagnetic energy harvesting transduction mechanism. These types of DVAs are suitable for control of multi-story buildings, where for the simplicity of analysis a two degree-of-freedom system which models the building with the absorber is considered. Controlling the vibrations of buildings is the primary objective, and harvesting the energy from the dynamic vibration pendulum absorber at the same time is the secondary objective. Parametric analyses are performed. It is observed that proper system parameter selection is key for reducing the vibration amplitude of the primary system and for enhancing the energy harvested from the secondary system. Optimization analysis based on the genetic algorithm approach is used to optimize the system parameters. It is observed that with a proper selection of parameters, wideband energy can be harvested along with reduction in vibration of the building.