Options
Shaikh Faruque Ali
Loading...
Preferred name
Shaikh Faruque Ali
Official Name
Shaikh Faruque Ali
Alternative Name
Faruque Ali, Shaikh
Ali, S. F.
Ali, S. Faruque
Ali, Shaikh Faruque
Main Affiliation
Email
ORCID
Scopus Author ID
Researcher ID
Google Scholar ID
2 results
Now showing 1 - 2 of 2
- PublicationDesign and conception of a trailing edge morphing wing concept with bistable composite skin(01-01-2020)
;Mukherjee, Aghna; ; Arockiarajan, A.In the recent past, bistable laminates have been widely studied for their potential in wing morphing applications. The existence of multiple stable states makes them extremely viable as structural elements. However, for successful deployment, these laminates must be integrated into a larger mechanism. For integration, the bistable laminates are required to be clamped to a larger structure without the loss of bistability. In this work, an attempt has been made to understand the effect of integration (i.e., using different structural constraints and clamping) on the bistability and the snapthrough performance of a special class of hybrid bistable symmetric laminates (HBSLs). The structural analysis has been carried out using FEA software ABAQUS. Subsequently, a conceptual design of a morphing wing is proposed based on the insights gained from the numerical analysis that uses two HBSLs as skin with a corrugated core. Finally, using the analysis guidelines, two HBSL skins and a circular corrugated core are manufactured and integrated to show the possibility of using such bistable laminates as skin. - PublicationShape prediction of a composite wing panel under the action of an SMA wire and an MFC bimorph(01-01-2019)
;Mukherjee, Aghna; Arockiarajan, A.In this article two numerical approaches for the shape prediction of a composite wing panel under the combined actuation of a Shape memory alloy (SMA) wire and a Macro fiber composite (MFC) bimorph has been developed. The first approach is a Euler-Bernouilli beam theory based linear finite element iterative scheme and the second approach is a Timoshenko beam theory based nonlinear finite element iterative scheme that takes into account the von Karman strains. The force due to the SMA wire is modeled as a follower force. It is shown that both the techniques developed are capable taking into account this non conservative follower force, while accounting for any additional arbitrary loading. The numerical schemes developed in this paper are validated using the existing techniques while elucidating the lacuna in the existing methods.