Options
Ethayaraja Mani
Loading...
Preferred name
Ethayaraja Mani
Official Name
Ethayaraja Mani
Alternative Name
Mani, Ethayaraja
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
2 results
Now showing 1 - 2 of 2
- PublicationSynthesis of non-spherical patchy particles at fluid-fluid interfaces: via differential deformation and their self-assembly(01-01-2016)
;Sabapathy, Manigandan ;Shelke, Yogesh; Non-spherical patchy particles are potential candidates as building blocks for the design of target colloidal structures via spontaneous self-organization. We report a facile scheme to synthesize non-spherical particles with patchy electrostatic interactions. In this method, charged spherical latex particles such as polystyrene (PS) are deformed unequally at an oil-water interface due to heating and partial swelling. The spherical particles then evolve into non-spherical shapes such as 'acorn-like' and 'idly-like'. We explain the mechanism of differential deformation by comparing the heat of viscous dissipation and the interfacial energies. Furthermore, if oppositely charged additives such as the cetyltrimethylammonium bromide (CTAB) surfactant or silica nanoparticles are present in water (subphase), electrostatic attraction leads to adsorption of these species on the PS surface exposed to water. As a result, one side of the particles is selectively functionalized, while the other side remains unaltered. As the latex particles are negatively charged initially, this method yields particles that are non-spherical in shape and with negative charges on one side and positive charges on the other side. The degree of shape deformation and patch coverage can be varied by choosing different surface active additives. We extend this approach to curved interfaces and demonstrate a high throughput emulsion based approach for the synthesis of such particles. Self-assembly of these particles shows interesting structures such as linear, branched polymeric or worm-like chains and micelle-like spherical aggregates. These shape anisotropic particles with orientation specific interactions that mimic bio-macromolecular systems can be further explored for self-assembly into hierarchical mesoscale structures. - PublicationStaggered Linear Assembly of Spherical-Cap Colloids(11-07-2017)
;Shelke, Yogesh ;Sabapathy, ManigandanLinear assembly of colloidal particles is of fundamental interest in visualizing polymer dynamics and living organisms. We have developed a fluid-fluid interface-based method to synthesize spherical-cap polymeric latex particles. These particles are shown to spontaneously self-assemble in zigzag arrangement. The linear assembly is induced due to the shape anisotropy (one side is curved and the other side is nearly flat) and heterogeneous charge distribution on the particle surfaces. The necessities of these conditions are justified within the framework of DLVO theory. Spherical-cap particles of various size and aspect ratio reproduced the observed linear assembly, thus demonstrating the robustness of the self-assembly mechanism. While these types of assemblies are observed in spherical particles using microfluidic devices or electric field, the proposed approach is rather facile and does not require any external field. These novel assemblies could be potentially useful to understand kinetics of nucleation and growth of amyloidogenic proteins and to prepare artificial swimming microorganisms.