Now showing 1 - 10 of 11
  • Placeholder Image
    Publication
    Drops spreading on fluid surfaces: Transition from Laplace to Marangoni regime
    (01-11-2021)
    Deodhar, Swaraj
    ;
    ;
    We show the occurrence of two distinguished classical regimes of wetting, namely, Laplace and solutal Marangoni, during the spreading of oil drops on a surfactant-laden aqueous phase in a single surfactant-oil-water system. The spreading kinetics is found to follow a power-law behavior not only in the Laplace and Marangoni regimes, but also in the transition regime. Our experimental findings are corroborated with the scaling laws. The results demonstrate that increasing the surfactant concentration across the critical micelle concentration is instrumental to obtain the Laplace to Marangoni transition. Moreover, this transition does not depend on surfactant chemistry; instead, it depends on the adsorption/desorption kinetics of surfactant molecules to/from the interfaces that are created or annihilated during drop spreading.
  • Placeholder Image
    Publication
    Drying Drops of Colloidal Dispersions
    Drying drops of colloidal dispersions have attracted attention from researchers since the nineteenth century. The multiscale nature of the problem involving physics at different scales, namely colloidal and interfacial phenomena as well as heat, mass, and momentum transport processes, combined with the seemingly simple yet nontrivial shape of the drops makes drying drop problems rich and interesting. The scope of such studies widens as the physical and chemical nature of dispersed entities in the drop vary and as evaporation occurs in more complex configurations. This review summarizes past and contemporary developments in the field, emphasizing the physicochemical and hydrodynamical principles that govern the processes occurring within a drying drop and the resulting variety of patterns generated on the substrate.
  • Placeholder Image
    Publication
    Robust Method to Determine Critical Micelle Concentration via Spreading Oil Drops on Surfactant Solutions
    (21-07-2020)
    Deodhar, Swaraj
    ;
    Rohilla, Pankaj
    ;
    ; ;
    The spreading of a liquid on another is often encountered in oil spills and coatings and is also of industrial relevance in pharmaceuticals and petrochemicals. In this study, the spreading of oil drops on aqueous solutions containing cationic, anionic, and nonionic surfactants over a wide range of surfactant concentrations is investigated. The spreading behavior quantified by measuring the time evolution of the projected area of the oil lens reveals the occurrence of a maximum, which is strongly dependent on the concentration of the surfactant in the aqueous solution. Our experiments show that this dependence is different at concentrations above and below the critical micelle concentration (CMC) of the surfactant and can be captured by two straight lines of different slopes. Interestingly, these two straight lines intersect at a concentration that coincides with the CMC of the surfactants in solution. We find that this behavior is universal as shown by performing experiments with different types of surfactants, their purity, and other system variables. Thus, we propose a method to unambiguously determine the CMC of surfactant solutions compared to the conventional techniques. The proposed method is simple, versatile, and applicable for the determination of CMC of both ionic and nonionic surfactants.
  • Placeholder Image
    Publication
    Kinetics of evaporation of colloidal dispersion drops on inclined surfaces
    (01-01-2023)
    Hariharan, Sankar
    ;
    ;
    Evaporation of colloidal dispersion drops leaves a deposit pattern where more particles are accumulated at the edge, popularly known as the coffee-ring effect. Such patterns formed from dried sessile drops are azimuthally symmetric. When the substrate is inclined, the symmetry of the patterns is altered due to the influence of gravity. This is reflected in the changes in (i) pinning/depinning dynamics of the drop, (ii) the strength of the evaporation-driven flows, and (iii) ultimately, the lifetime of the drop. We present a systematic investigation of the kinetics of evaporation of particle-laden drops on hydrophilic inclined solid substrates. The angle of inclination of the substrate (ϕ) is varied from 0° to 90°. The temporal analysis of the drop shape profile is carried out to unearth the contribution of different processes to kinetics of evaporation of drops on inclined surfaces. The influence of particle concentration, drop volume, and angle of inclination on the kinetics of evaporation and the resulting deposit patterns are discussed.
  • Placeholder Image
    Publication
    Particle size and substrate wettability dependent patterns in dried pendant drops
    (13-10-2020)
    Kumar, P. Logesh
    ;
    ;
    The particle laden sessile drops when dried on solid surfaces under certain conditions leave a deposit pattern wherein all the particles are confined to a narrow region close to the edge of the deposit. Such patterns which often form when coffee drops dry are referred to as the coffee ring patterns or the coffee stains. Recent research points to the formation of intriguing patterns when colloidal particle laden drops are dried in configurations other than sessile mode. In this article, the combined effect of particle size and wettability of the substrate on the patterns formed by drying drops in sessile and pendant configurations is investigated via experiments. Our results demonstrate a transition from coffee ring to central dome-like deposit morphology with decrease in wettability of the substrates when drops containing 3 μm diameter particles are dried in pendent mode. A similar transition in the deposit morphology is observed with increase in the diameter of the particles in pendant drops dried on substrates of near neutral wettability (θ = 86 ± 3°). The influence of particles size, substrate wettability and drop configuration on the kinetics of deposition of particles at the three phase contact line will also be discussed. We compare our experimental observations with particle based simulations wherein the dried patterns are generated by accounting for three particle transport modes, namely, advective particle transport resulting from capillary flow, gravity driven settling of particles and particle capture by descending interface.
  • Placeholder Image
    Publication
    Statics and dynamics of drops spreading on a liquid-liquid interface
    The spreading of drops on surfaces is ubiquitous and has relevance to many technological applications. In this work, we present two-dimensional numerical simulations of the surface tension driven spreading of drops dispensed on a fluid-fluid interface. A comprehensive picture describing the equilibrium shapes of the drops is provided in the form of a state diagram. We show that the analysis of kinetics of drops that spread symmetrically on the fluid-fluid interface reveal several interesting features: (i) the existence of a single length scale that describes the spreading process, (ii) the power law dependence of the temporal variation of the geometrical parameters of the spreading drop, (iii) the linear dependence of the power law exponents on the equilibrium enclosing angle of the liquid drop, (iv) a strong dependence of the power law exponents on the spreading coefficient, and (v) a collapse of the spreading kinetics data into a master curve. Though restricted to two dimensions, our analysis provides a rationale for explaining experimentally determined power law exponents which have been reported to vary over a wide range and hence to understand the universal nature of the spreading process.
  • Placeholder Image
    Publication
    An experimental and theoretical study of the inward particle drift in contact line deposits
    (25-02-2022)
    Parthasarathy, Dinesh
    ;
    Chandragiri, Santhan
    ;
    ; ;
    The coffee ring effect, which refers to the formation of a ring-like deposit along the periphery of a dried particle laden sessile drop, is a commonly observed phenomenon. The migration of particles from the interior to the edge of a drying drop as a result of evaporation driven flow directed outwards, is well studied. In this article, we document the inward drift of a coffee stain, which is governed by the descent of the water-air interface of the drying drop due to solvent evaporation. A combination of experimental study and model predictions is undertaken to elucidate the effect of the diameter of particles in the drying drop, the wettability of the substrate on which the drop resides, and the concentration of particles on the inward drift of the coffee stain. This work also suggests a novel method to estimate the coefficient of friction between the particles and the substrate.
  • Placeholder Image
    Publication
    Patterns from drops drying on inclined substrates
    (07-09-2021)
    Logesh Kumar, P.
    ;
    ;
    The coffee ring effect results from the migration of particles in a drying particle laden drop and their subsequent deposition at the three phase contact line. The evaporative flux during the drying of sessile drops and the spatial distribution of particles in the coffee ring patterns exhibit azimuthal symmetry. It is possible to break this symmetry with the help of gravity by simply manipulating the inclination of the substrate on which the colloidal droplet undergoes drying. However, the effect of particle size, substrate wettability and inclination angle on the extent of asymmetry in the spatial distribution of particles over the deposit patterns has not been explored and is the subject of the current work. Our experiments on the drying of aqueous dispersions of polystyrene particles show that (i) asymmetry in the deposition of particles is observed irrespective of the diameter of the dispersed particles in the drying drop (ii) the degree of asymmetry increases with a decrease in wettability of the drop on the substrate and (iii) it is a non-monotonic function of the inclination angle of the substrate. These results indicate the possibility of additional particle transport mechanisms working in tandem with evaporation driven capillary flows and demand further investigation of the physics of pattern formation in drops drying on oriented substrates. This journal is
  • Placeholder Image
    Publication
    Beyond Coffee Rings: Drying Drops of Colloidal Dispersions on Inclined Substrates
    The patterns resulting from drying particle-laden sessile drops (for example, coffee rings, where the particles are concentrated more at the edge, and their complete suppression, where the particles are uniformly distributed throughout the pattern) have been well studied for more than two decades. For the ubiquitous instance of occurrence of drying of drops containing nonvolatile species (either dissolved or dispersed) on substrates oriented at different angles with respect to gravity, the investigation of resulting evaporative patterns has not received much attention. This mini-review addresses the need to investigate the drying of drops residing on inclined surfaces and highlights recent advances in this field.
  • Placeholder Image
    Publication
    Further Insights into Patterns from Drying Particle Laden Sessile Drops
    The evaporation of colloidal dispersions is an elegant and straightforward route to controlled self-assembly of particles on a solid surface. In particular, the evaporation of particle laden drops placed on solid substrates has received considerable attention for more than two decades. Such particle filled drops upon complete evaporation of the solvent leave behind a residue, commonly called particulate deposit pattern. In these patterns, typically, more particles accumulate at the edge compared to the interior, a feature observed when coffee drops evaporate. Consequently, such evaporative patterns are called coffee stains. In this article, the focus is on the evaporation of highly dilute suspension drops containing particles of larger diameters ranging from 3 to 10 μm drying on solid substrates. This helps us to investigate the combined role of gravity-driven settling of particles and capillary flow-driven particle transport on pattern formation in drying drops. In the highly dilute concentration limit, the evaporative patterns are found to show a transition, from a monolayer deposit that consists of a single layer of particles, to a multilayer deposit as a function of particle diameter and initial concentration of particles in the drying drop. Moreover, the spatial distribution of particles as well as the ordering of particles in the deposit patterns are found to be particle size dependent. It is also seen that the order-disorder transition, a feature associated with the organization of particles at the edge of the deposit, observed typically at moderate particle concentrations, disappears at the highly dilute concentrations considered here. The evaporation of drops containing particles of 10 μm diameter, where the effect of gravity on the particle becomes significant, leads to uniform deposition of particles, i.e, suppression of the coffee-stain effect and to the formation of two-dimensional percolating networks.