Now showing 1 - 2 of 2
  • Placeholder Image
    Publication
    Characterization and lower bounds for branching program size using projective dimension
    (01-02-2019)
    Dinesh, Krishnamoorthy
    ;
    Koroth, Sajin
    ;
    We study projective dimension, a graph parameter, denoted by pd(G) for a bipartite graph G, introduced by Pudlák and Rödl (1992). For a Boolean function f (on n bits), Pudlák and Rödl associated a bipartite graph G f and showed that size of the optimal branching program computing f , denoted by bpsize(f ), is at least pd(G f ) (also denoted by pd(f )). Hence, proving lower bounds for pd(f ) implies lower bounds for bpsize(f ). Despite several attempts (Pudlák and Rödl (1992), Rónyai et al. (2000)), proving super-linear lower bounds for projective dimension of explicit families of graphs has remained elusive. We observe that there exist a Boolean function f for which the gap between the pd(f ) and bpsize(f )) is 2 Ω( n ) . Motivated by the argument in Pudlák and Rödl (1992), we define two variants of projective dimension: projective dimension with intersection dimension 1, denoted by upd(f ), and bitwise decomposable projective dimension, denoted by bitpdim(f ). We show the following results: (a) We observe that there exist a Boolean function f for which the gap between upd(f ) and bpsize(f ) is 2 Ω( n ) . In contrast, we also show that the bitwise decomposable projective dimension characterizes size of the branching program up to a polynomial factor. That is, there exists a constant c > 0 and for any function f , bitpdim(f )/6 ≤ bpsize(f ) ≤ (bitpdim(f )) c . (b) We introduce a new candidate family of functions f for showing super-polynomial lower bounds for bitpdim(f ). As our main result, for this family of functions, we demonstrate gaps between pd(f ) and the above two new measures for f : . We adapt Nechiporuk's techniques for our linear algebraic setting to prove the best-known bpsize lower bounds for bitpdim. Motivated by this linear algebraic setting of our main result, we derive exponential lower bounds for two restricted variants of pd(f ) and upd(f ) by observing that they are exactly equal to well-studied graph parameters-bipartite clique cover number and bipartite partition number, respectively.
  • Placeholder Image
    Publication
    Pebbling, entropy, and branching program size lower bounds
    (01-05-2015)
    Komarath, Balagopal
    ;
    We contribute to the program of proving lower bounds on the size of branching programs solving the Tree Evaluation Problem introduced by Cook et al. [2012]. Proving a superpolynomial lower bound for the size of nondeterministic thrifty branching programs would be an important step toward separating NL from P using the tree evaluation problem. First, we show that Read-Once Nondeterministic Thrifty BPs are equivalent to whole black-white pebbling algorithms, thus showing a tight lower bound (ignoring polynomial factors) for this model. We then introduce a weaker restriction of nondeterministic thrifty branching programs called Bitwise Independence. The best known [Cook et al. 2012] nondeterministic thrifty branching programs (of size O(kh/2+)) for the tree evaluation problem are Bitwise Independent. As our main result, we show that any Bitwise Independent Nondeterministic Thrifty Branching Program solving BT2(h, k) must have at least (k/2)h/2 states. Prior to this work, lower bounds were known for nondeterministic thrifty branching programs only for fixed heights h = 2, 3, 4 [Cook et al. 2012]. We prove our results by associating a fractional blackwhite pebbling strategy with any bitwise independent nondeterministic thrifty branching program solving the Tree Evaluation Problem. Such a connection was not known previously, even for fixed heights. Our main technique is the entropy method introduced by Jukna and Zák [2001] originally in the context of proving lower bounds for read-once branching programs. We also show that the previous lower bounds known [Cook et al. 2012] for deterministic branching programs for the Tree Evaluation Problem can be obtained using this approach. Using this method, we also show tight lower bounds for any k-way deterministic branching program solving the Tree Evaluation Problem when the instances are restricted to have the same group operation in all internal nodes.