Options
Vishal V. R. Nandigana
Loading...
Preferred name
Vishal V. R. Nandigana
Official Name
Vishal V. R. Nandigana
Alternative Name
Nandigana, Vishal
Nandigana, Vishal V.R.
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
4 results
Now showing 1 - 4 of 4
- PublicationA molecular dynamics simulation framework for predicting noise in solid-state nanopores(01-09-2020)
;Patil, Onkar ;Manikandan, D.In this paper, we perform all-atom molecular dynamics (AA-MD) simulations to predict noise in solid-state nanopores. The simulation system consists of ∼70,000 to ∼350,000 atoms. The simulations are carried out for ∼1.3 µs over ∼6500 CPU hours in 128 processors (Intel® E5-2670 2.6 GHz Processor). We observe low and high frequency noise in solid-state nanopores. The low frequency noise is due to the surface charge density of the nanopore. The high frequency noise is due to the thermal motion of ions and dielectric material of the solid-state nanopore. We propose a generalised noise theory to match both the low and high frequency noise. The study may help ways to study noise in solid-state nanoporous membranes using MD simulations. - PublicationOverlimiting current near a nanochannel a new insight using molecular dynamics simulations(01-12-2021)
;Manikandan, D.In this paper, we report for the first time overlimiting current near a nanochannel using all-atom molecular dynamics (MD) simulations. Here, the simulated system consists of a silicon nitride nanochannel integrated with two reservoirs. The reservoirs are filled with 0.1M potassium chloride (KCl) solution. A total of ∼ 1.1 million atoms are simulated with a total simulation time of ∼ 1 μs over ∼ 30000 CPU hours using 128 core processors (Intel(R) E5-2670 2.6 GHz Processor). The origin of overlimiting current is found to be due to an increase in chloride (Cl-) ion concentration inside the nanochannel leading to an increase in ionic conductivity. Such effects are seen due to charge redistribution and focusing of the electric field near the interface of the nanochannel and source reservoir. Also, from the MD simulations, we observe that the earlier theoretical and experimental postulations of strong convective vortices resulting in overlimiting current are not the true origin for overlimiting current. Our study may open up new theories for the mechanism of overlimiting current near the nanochannel interconnect devices. - PublicationLaser-Assisted Scalable Pore Fabrication in Graphene Membranes for Blue-Energy Generation(03-04-2023)
;Yadav, Sharad Kumar ;Manikandan, D. ;Singh, Chob ;Kumar, Mukesh ;Aswathy, G.; ; Nayak, Pramoda K.The osmotic energy from a salinity gradient (i. e. blue energy) is identified as a promising non-intermittent renewable energy source for a sustainable technology. However, this membrane-based technology is facing major limitations for large-scale viability, primarily due to the poor membrane performance. An atomically thin 2D nanoporous material with high surface charge density resolves the bottleneck and leads to a new class of membrane material the salinity gradient energy. Although 2D nanoporous membranes show extremely high performance in terms of energy generation through the single pore, the fabrication and technical challenges such as ion concentration polarization make the nanoporous membrane a non-viable solution. On the other hand, the mesoporous and micro porous structures in the 2D membrane result in improved energy generation with very low fabrication complexity. In the present work, we report femtosecond (fs) laser-assisted scalable fabrication of μm to mm size pores on Graphene membrane for blue energy generation for the first time. A remarkable osmotic power in the order of μW has been achieved using mm size pores, which is about six orders of magnitudes higher compared to nanoporous membranes, which is mainly due to the diffusion-osmosis driven large ionic flux. Our work paves the way towards fs laser-assisted scalable pore creation in the 2D membrane for large-scale osmotic power generation. - PublicationElectrodiffusioosmosis induced negative differential resistance in micro-to-millimeter size pores through a graphene/copper membrane(01-01-2022)
;Yadav, Sharad Kumar ;Manikandan, D. ;Singh, Chob ;Kumar, Mukesh; Nayak, Pramoda K.Negative differential resistance (NDR) is one of the nonlinear transport phenomena in which ionic current decreases with the increase in electromotive potential. Electro-osmosis, diffusio-osmosis, and surface charge density of pores are the driving forces for observing NDR in nanoscale ion transport. Here, we report electrodiffusioosmosis induced NDR using micro to millimeter size pores in a two-dimensional (2D) graphene-coated copper (Gr/Cu) membrane. Along with NDR, we also observed ion current rectification (ICR), in which there is preferential one-directional ion flow for equal and opposite potentials. The experimentally observed NDR effect has been validated by performing ion transport simulations using Poisson-Nernst-Planck (PNP) equations and Navier-Stokes equations with the help of COMSOL Multiphysics considering salinity gradient across the membrane. Charge polarization induced electro-osmotic flow (EOF) dominates over diffusio-osmosis, causing the backflow of low concentration/conductivity solution into the pore, thereby causing NDR. This finding paves the way toward potential applications in ionic tunnel diodes as rectifiers, switches, amplifiers, and biosensors.