Options
Manu Jaiswal
Loading...
Preferred name
Manu Jaiswal
Official Name
Manu Jaiswal
Alternative Name
Jaiswal, Manu
Jaiswal, M.
Main Affiliation
ORCID
Scopus Author ID
Researcher ID
Google Scholar ID
2 results
Now showing 1 - 2 of 2
- PublicationBreakdown of water super-permeation in electrically insulating graphene oxide films: Role of dual interlayer spacing(07-06-2018)
;Kavitha, Maheshwari Kavirajan ;Sakorikar, Tushar; Conventional graphene oxide (GO) is characterized by low sp2 content in a sp3 rich matrix, which is responsible both for electrical insulation and water super-permeation. Upon reduction, electrical conduction is achieved at the expense of water permeation ability. Here, we demonstrate that charge conduction and water permeation can be simultaneously restricted in a functionalized form of GO. Gravimetric studies reveal that diffusion of water vapor through a glassy polymer membrane is arrested by loading a hydrophobic form of GO (H-GO) in the polymer matrix, even as such, water inhibition cannot be realized by substantially increasing the thickness of the bare polymer. As an application, the ability of the coating to impede the degradation of methyl ammonium lead iodide films under high humidity conditions is demonstrated. At the same time the H-GO film has a resistance over 107 times higher when compared to thermally reduced GO of similar sp2 fraction. We attribute this unique behavior to the presence of a sub-micron matrix of GO with simultaneous presence of large (∼9.5 Å) and small (∼4.7 Å) interlayer spacing. This leads to disruption of the spatially distributed percolation pathways for electrical charge, and it also serves to block the nanocapillary networks for water molecules. - PublicationIntercalated water mediated electromechanical response of graphene oxide films on flexible substrates(12-01-2022)
;Devendar, Lavudya ;Shijeesh, M. R. ;Sakorikar, Tushar; The confinement of water between sub-nanometer bounding walls of layered two-dimensional materials has generated tremendous interest. Here, we examined the influence of confined water on the mechanical and electromechanical response of graphene oxide films, prepared with variable oxidative states, casted on polydimethylsiloxane substrates. These films were subjected to uniaxial strain under controlled humid environments (5 to 90% RH), while dc transport studies were performed in tandem. Straining resulted in the formation of quasi-periodic linear crack arrays. The extent of water intercalation determined the density of cracks formed in the system thereby, governing the electrical conductance of the films under strain. The crack density at 5% strain, varied from 0 to 3.5 cracks mm-1 for hydrated films and 8 to 22 cracks mm-1 for dry films, across films with different high oxidative states. Correspondingly, the overall change in the electrical conductance at 5% strain was observed to be ∼5 to 20 folds for hydrated films and ∼20 to 35 folds for the dry films. The results were modeled with a decrease in the in-plane elastic modulus of the film upon water intercalation, which was attributed to the variation in the nature of hydrogen bonding network in graphene oxide lamellae.