Options
Palaniappan Ramu
Loading...
Preferred name
Palaniappan Ramu
Official Name
Palaniappan Ramu
Alternative Name
Ramu, Palaniappan
Ramu, P.
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
5 results
Now showing 1 - 5 of 5
- PublicationReliability estimation using guided tail modeling with adaptive sampling(01-01-2014)
;Acar, ErdemReliability estimation of highly safe structures can be performed efficiently using tail modeling. Classical tail modeling is based on performing a relatively small number of limitstate evaluations through a sampling scheme, selecting a proper threshold value to specify the tail part and then fitting a tail model to the tail part. In this procedure, the limit-state calculations that do not belong to the tail part are mostly discarded, so majority of limitstate evaluations are wasted. Tail modeling can be performed more efficiently if the limitstate evaluations can be guided so that samples can be drawn from the tail part only. Our earlier study showed that the guidance of limit-state function calculations can be achieved by using support vector machines, and the accuracy of reliability estimations can be improved. In this paper, simultaneous construction of support vector machines with adaptive sampling is proposed to increase the accuracy. The performance of the proposed method is evaluated through two structural mechanics example problems: (i) tuned vibration absorber problem and (ii) ten-bar truss problem. It is found for these example problems that the proposed method further increases the accuracy of reliability index predictions. - PublicationSmall failure probability: principles, progress and perspectives(01-11-2022)
;Lee, Ikjin ;Lee, Ungki; ;Yadav, Deepanshu ;Bayrak, GamzeAcar, ErdemDesign of structural and multidisciplinary systems under uncertainties requires estimation of their reliability or equivalently the probability of failure under the given operating conditions. Various high technology systems including aircraft and nuclear power plants are designed for very small probabilities of failure, and estimation of these small probabilities is computationally challenging. Even though substantial number of approaches have been proposed to reduce the computational burden, there is no established guideline to decide which approach is the best choice for a given problem. This paper provides a review of the approaches developed for small probability estimation of structural or multidisciplinary systems and enlists the criterion/metrics to choose the preferred approach amongst the existing ones, for a given problem. First, the existing approaches are categorized into the sampling-based, the surrogate-based, and statistics of extremes based approaches. Next, the small probability estimation methods developed for time-independent systems and the ones tailored for time-dependent systems are discussed, respectively. Then, some real-life engineering applications in structural and multidisciplinary design studies are summarized. Finally, concluding remarks are provided, and areas for future research are suggested. - PublicationSpecial issue dedicated to Former Editor-in-Chief Raphael T. Haftka(01-11-2021)
;Kim, Nam H. ;Queipo, Nestor V. ;Viana, Felipe A.C.; ;Acar, Erdem ;Rodrigues, Helder C. ;Cheng, GengdongZhou, Ming - PublicationA survey of machine learning techniques in structural and multidisciplinary optimization(01-09-2022)
; ;Thananjayan, Pugazhenthi ;Acar, Erdem ;Bayrak, Gamze ;Park, Jeong WooLee, IkjinMachine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary optimization field. First, we discuss the challenges associated with conventional optimization and how Machine learning can address them. Then, we review the literature in the context of how ML can accelerate design synthesis and optimization. Some real-life engineering applications in structural design, material design, fluid mechanics, aerodynamics, heat transfer, and multidisciplinary design are summarized, and a brief list of widely used open-source codes as well as commercial packages are provided. Finally, the survey culminates with some concluding remarks and future research suggestions. For the sake of completeness, categories of ML problems, algorithms, and paradigms are presented in the Appendix. - PublicationModeling, analysis, and optimization under uncertainties: a review(01-11-2021)
;Acar, Erdem ;Bayrak, Gamze ;Jung, Yongsu ;Lee, Ikjin; Ravichandran, Suja ShreeDesign optimization of structural and multidisciplinary systems under uncertainty has been an active area of research due to its evident advantages over deterministic design optimization. In deterministic design optimization, the uncertainties of a structural or multidisciplinary system are taken into account by using safety factors specified in the regulations or design codes. This uncertainty treatment is a subjective and indirect way of dealing with uncertainty. On the other hand, design under uncertainty approaches provide an objective and direct way of dealing with uncertainty. This paper provides a review of the uncertainty treatment practices in design optimization of structural and multidisciplinary systems under uncertainties. To this end, the activities in uncertainty modeling are first reviewed, where theories and methods on uncertainty categorization (or classification), uncertainty handling (or management), and uncertainty characterization are discussed. Second, the tools and techniques developed and used for uncertainty modeling and propagation are discussed under the broad two classes of probabilistic and non-probabilistic approaches. Third, various design optimization methods under uncertainty which incorporate all the techniques covered in uncertainty modeling and analysis are reviewed. In addition to these in-depth reviews on uncertainty modeling, uncertainty analysis, and design optimization under uncertainty, some real-life engineering applications and benchmark test examples are provided in this paper so that readers can develop an appreciation on where and how the discussed techniques can be applied and how to compare them. Finally, concluding remarks are provided, and areas for future research are suggested.