Now showing 1 - 3 of 3
  • Placeholder Image
    Publication
    Differentiation of COVID-19 Conditions using Mediastinum Shape in Chest X-ray Images
    (01-08-2022)
    Tulo, Sukanta Kumar
    ;
    Govindarajan, Satyavratan
    ;
    ;
    Swaminathan, Ramakrishnan
    In this work, an attempt has been made to analyze the shape variations in mediastinum for differentiation of Coronavirus Disease-2019 (COVID-19) and normal conditions in chest X-ray images. For this, the images are obtained from a publicly available dataset. Segmentation of mediastinum from the raw images is performed using Reaction Diffusion Level Set (RDLS) method. Shape-based features are extracted from the delineated mediastinum masks and are statistically analyzed. Further, the features are fed to two classifiers, namely, multi-layer perceptron and support vector machine for differentiation of normal and COVID-19 images. From the results, it is observed that the employed RDLS method is able to delineate mediastinum from the raw chest X-ray images. Eight shape features are observed to be statistically significant. The mean values of these features are found to be distinctly higher for COVID-19 images as compared to normal images. Area under the curve of greater than 76.9% is achieved for both the classifiers. It appears that mediastinum could be used as a region of interest for computerized detection and mass screening of the disease.
  • Placeholder Image
    Publication
    Shape characterization of mediastinum in tuberculosis chest radiographs using level set segmentation
    (01-04-2021)
    Tulo, Sukanta Kumar
    ;
    Govindarajan, Satyavratan
    ;
    ;
    Mediastinum is considered as one of the substantial anatomical regions for the gross diagnosis of several chest related pathologies. The geometric variations of the mediastinum in Chest Radiographs (CXRs) could be utilised as potential image markers in the early detection of Tuberculosis (TB). This study attempts to segment mediastinum in CXRs using level sets for the shape characterization of TB conditions. The CXR images for this study are considered from a public database. An edge-based distance regularized level set evolution is employed to segment the lungs followed by a region-based Chan-Vese model that extracts mediastinum region. Features such as mediastinum area and lungs area are extracted from the segmented images. Further, mediastinum to lungs area ratio is calculated. Statistical analysis is performed on the features to differentiate normal and TB images. Results show that the proposed segmentation approach is able to segment the lungs and extract the mediastinum in CXRs. It is found that features namely mediastinum area and mediastinum to lungs area ratio are statistically significant in the differentiation of TB. Larger mediastinum area is observed in TB images as compared to normal. The performance of lung field segmentation is also observed to be in line with the literature. The mediastinum segmentation approach in CXRs obtains to be a novel method as compared to the existing methods. As the proposed approach based on mediastinum image analysis provides better shape characterization, the study could be clinically useful in the differentiation of TB conditions.
  • Placeholder Image
    Publication
    An automated approach to differentiate drug resistant tuberculosis in chest X-ray images using projection profiling and mediastinal features
    (01-07-2021)
    Tulo, Sukanta Kumar
    ;
    ;
    In this study, an attempt has been made to differentiate Drug Resistant Tuberculosis (DR-TB) in chest X-rays using projection profiling and mediastinal features. DR-TB is a condition which is non-responsive to at least one of anti-TB drugs. Mediastinum variations can be considered as significant image biomarkers for detection of DR-TB. Images are obtained from a public database and are contrast enhanced using coherence filtering. Projection profiling is used to obtain the feature lines from which the mediastinal and thoracic indices are computed. Classification of Drug Sensitive (DS-TB) and DR-TB is performed using three classifiers. Results show that the mediastinal features are found to be statistically significant. Support vector machine with quadratic kernel is able to provide better classification performance values of greater than 93%. Hence, the automated analysis of mediastinum could be clinically significant in differentiation of DR-TB. © 2021 European Federation for Medical Informatics (EFMI) and IOS Press.