Now showing 1 - 10 of 52
  • Placeholder Image
    Publication
    Uncovering novel pathways for enhancing hyaluronan synthesis in recombinant Lactococcus lactis: Genome-scale metabolic modeling and experimental validation
    (01-06-2019)
    Badri, Abinaya
    ;
    ;
    Hyaluronan (HA), a glycosaminoglycan with important medical applications, is commercially produced from pathogenic microbial sources. The metabolism of HA-producing recombinant generally regarded as safe (GRAS) systems needs to be more strategically engineered to achieve yields higher than native producers. Here, we use a genome-scale model (GEM) to account for the entire metabolic network of the cell while predicting strategies to improve HA production. We analyze the metabolic network of Lactococcus lactis adapted to produce HA and identify non-conventional strategies to enhance HA flux. We also show experimental verification of one of the predicted strategies. We thus identified an alternate route for enhancement of HA synthesis, originating from the nucleoside inosine, that can function in parallel with the traditionally known route from glucose. Adopting this strategy resulted in a 2.8-fold increase in HA yield. The strategies identified and the experimental results show that the cell is capable of involving a larger subset of metabolic pathways in HA production. Apart from being the first report to use a nucleoside to improve HA production, we demonstrate the role of experimental validation in model refinement and strategy improvisation. Overall, we point out that well-constructed GEMs could be used to derive efficient strategies to improve the biosynthesis of high-value products.
  • Placeholder Image
    Publication
    A systems theoretic approach to systems and synthetic biology ii: Analysis and design of cellular systems
    (01-03-2014)
    Kulkarni, Vishwesh V.
    ;
    Stan, Guy Bart
    ;
    The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. Volume II contains chapters contributed by leading researchers in the field of systems and synthetic biology that concern modeling physiological processes and bottom-up constructions of scalable biological systems. The modeling problems include characterisation and synthesis of memory, understanding how homoeostasis is maintained in the face of shocks and relatively gradual perturbations, understanding the functioning and robustness of biological clocks such as those at the core of circadian rhythms, and understanding how the cell cycles can be regulated, among others. Some of the bottom-up construction problems investigated in Volume II are as follows: How should biomacromolecules, platforms, and scalable architectures be chosen and synthesised in order to build programmable de novo biological systems? What are the types of constrained optimisation problems encountered in this process and how can these be solved efficiently? As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.
  • Placeholder Image
    Publication
    Discovering design principles for biological functionalities: Perspectives from systems biology
    (01-12-2022)
    Bhattacharya, Priyan
    ;
    ;
    Network architecture plays a crucial role in governing the dynamics of any biological network. Further, network structures have been shown to remain conserved across organisms for a given phenotype. Therefore, the mapping between network structures and the output functionality not only aids in understanding of biological systems but also finds application in synthetic biology and therapeutics. Based on the approaches involved, most of the efforts hitherto invested in this field can be classified into three broad categories, namely, computational efforts, rule-based methods and systems-theoretic approaches. The present review provides a qualitative and quantitative study of all three approaches in the light of three well-researched biological phenotypes, namely, oscillation, toggle switching, and adaptation. We also discuss the advantages, limitations, and future research scope for all three approaches along with their possible applications to other emergent properties of biological relevance.
  • Placeholder Image
    Publication
    A new index for information gain in the Bayesian framework
    (01-01-2020)
    Jagadeesan, Prem
    ;
    ;
    In data-driven dynamical modeling, precise estimation of the parameters of large models from limited data has been considered a challenging task. The precision of the parameter estimates is highly dependent upon the information contained in the data; Loss of practical identifiability and sloppiness in the model structure are major challenges in estimating parameters precisely and closely related to the information contained in the data. Therefore, quantifying information is an important step in data-driven modeling. Quantifying information is a well-studied problem in the frequentist approach, where Fisher Information is one of the widely used metrics. However, Fisher Information computed via maximum likelihood estimation cannot accommodate any known prior knowledge about the parameters. Prior knowledge of the parameters along with informative experiments will improve the precision of the estimates. Bayesian estimation accommodates prior information in the form of a p.d.f. There has been very little work in the literature for quantifying information in the Bayesian framework. In this work, we introduce a new method for estimating information gain in the Bayesian framework using what is known as the Bhattacharyya coefficient. It is seen that the bounds of the coefficient have an insightful interpretation naturally in terms of information gain on the parameter of interest. We also demonstrate using case studies that the information gain of each parameter is an indication of loss of practical identifiability and sloppy parameters. It is also shown that the proposed information gain can be used as a model selection tool in black-box identification.
  • Placeholder Image
    Publication
    Elucidating the biosynthetic pathways of volatile organic compounds in: Mycobacterium tuberculosis through a computational approach
    (01-01-2017)
    Bhatter, Purva
    ;
    ;
    Microbial volatile organic compounds (VOCs) have gained prominence in the recent past for their potential use as disease markers. The discovery of microbial VOCs has benefited 'difficult to detect' diseases such as tuberculosis (TB). Few of the identified VOCs of Mycobacterium tuberculosis (Mtb) are currently being explored for their diagnostic potential. However, very little is known about the biosynthesis of these small lipophilic molecules. Here, we propose putative biosynthetic pathways in Mycobacterium tuberculosis for three VOCs, namely methyl nicotinate, methyl phenylacetate and methyl p-anisate, using computational approaches. In particular, we identify S-adenosyl methionine (SAM) transferases that play a crucial role in esterification of the acids to the final product. Our results provide important insights into the specificity of these pathways to Mtb species.
  • Placeholder Image
    Publication
    Identification of putative and potential cross-reactive chickpea (Cicer arietinum) allergens through an in silico approach
    (01-01-2013)
    Kulkarni, Anuja
    ;
    Ananthanarayan, Laxmi
    ;
    Background Allergy has become a key cause of morbidity worldwide. Although many legumes (plants in the Fabaceae family) are healthy foods, they may have a number of allergenic proteins. A number of allergens have been identified and characterized in Fabaceae family, such as soybean and peanut, on the basis of biochemical and molecular biological approaches. However, our understanding of the allergens from chickpea (Cicer arietinum L.), belonging to this family, is very limited. Objective In this study, we aimed to identify putative and cross-reactive allergens from Chickpea (C. arietinum) by means of in silico analysis of the chickpea protein sequences and allergens sequences from Fabaceae family. Methods We retrieved known allergen sequences in Fabaceae family from the IUIS Allergen Nomenclature Database. We performed a protein BLAST (BLASTp) on these sequences to retrieve the similar sequences from chickpea. We further analyzed the retrieved chickpea sequences using a combination of in silico tools, to assess them for their allergenicity potential. Following this, we built structure models using FUGUE: Sequence-structure homology; these models generated by the recognition tool were viewed in Swiss-PDB viewer. Results Through this in silico approach, we identified seven novel putative allergens from chickpea proteome sequences on the basis of similarity of sequence, structure and physicochemical properties with the known reported legume allergens. Four out of seven putative allergens may also show cross reactivity with reported allergens since potential allergens had common sequence and structural features with the reported allergens. Conclusion The in silico proteomic identification of the allergen proteins in chickpea provides a basis for future research on developing hypoallergenic foods containing chickpea. Such bioinformatics approaches, combined with experimental methodology, will help delineate an efficient and comprehensive approach to assess allergenicity and pave the way for a better understanding of the biological and medical basis of the same. © 2013 Elsevier Ltd. All rights reserved.
  • Placeholder Image
    Publication
    Adapting community detection algorithms for disease module identification in heterogeneous biological networks
    (01-01-2019)
    Tripathi, Beethika
    ;
    Parthasarathy, Srinivasan
    ;
    ; ;
    Ravindran, Balaraman
    Biological networks catalog the complex web of interactions happening between different molecules, typically proteins, within a cell. These networks are known to be highly modular, with groups of proteins associated with specific biological functions. Human diseases often arise from the dysfunction of one or more such proteins of the biological functional group. The ability, to identify and automatically extract these modules has implications for understanding the etiology of different diseases as well as the functional roles of different protein modules in disease. The recent DREAM challenge posed the problem of identifying disease modules from six heterogeneous networks of proteins/genes. There exist many community detection algorithms, but all of them are not adaptable to the biological context, as these networks are densely connected and the size of biologically relevant modules is quite small. The contribution of this study is 3-fold: first, we present a comprehensive assessment of many classic community detection algorithms for biological networks to identify non-overlapping communities, and propose heuristics to identify small and structurally well-defined communities - core modules. We evaluated our performance over 180 GWAS datasets. In comparison to traditional approaches, with our proposed approach we could identify 50% more number of disease-relevant modules. Thus, we show that it is important to identify more compact modules for better performance. Next, we sought to understand the peculiar characteristics of disease-enriched modules and what causes standard community detection algorithms to detect so few of them. We performed a comprehensive analysis of the interaction patterns of known disease genes to understand the structure of disease modules and show that merely considering the known disease genes set as a module does not give good quality clusters, as measured by typical metrics such as modularity and conductance. We go on to present a methodology leveraging these known disease genes, to also include the neighboring nodes of these genes into a module, to form good quality clusters and subsequently extract a "gold-standard set" of disease modules. Lastly, we demonstrate, with justification, that "overlapping" community detection algorithms should be the preferred choice for disease module identification since several genes participate in multiple biological functions.
  • Placeholder Image
    Publication
    ICOMIC: A graphical interface-driven bioinformatics pipeline for analyzing cancer omics data
    (01-09-2022)
    Anilkumar Sithara, Anjana
    ;
    Maripuri, Devi Priyanka
    ;
    Moorthy, Keerthika
    ;
    Amirtha Ganesh, Sai Sruthi
    ;
    Philip, Philge
    ;
    Banerjee, Shayantan
    ;
    Sudhakar, Malvika
    ;
    Despite the tremendous increase in omics data generated by modern sequencing technologies, their analysis can be tricky and often requires substantial expertise in bioinformatics. To address this concern, we have developed a user-friendly pipeline to analyze (cancer) genomic data that takes in raw sequencing data (FASTQ format) as input and outputs insightful statistics. Our iCOMIC toolkit pipeline featuring many independent workflows is embedded in the popular Snakemake workflow management system. It can analyze whole-genome and transcriptome data and is characterized by a user-friendly GUI that offers several advantages, including minimal execution steps and eliminating the need for complex command-line arguments. Notably, we have integrated algorithms developed in-house to predict pathogenicity among cancer-causing mutations and differentiate between tumor suppressor genes and oncogenes from somatic mutation data. We benchmarked our tool against Genome In A Bottle benchmark dataset (NA12878) and got the highest F1 score of 0.971 and 0.988 for indels and SNPs, respectively, using the BWA MEM - GATK HC DNA-Seq pipeline. Similarly, we achieved a correlation coefficient of r = 0.85 using the HISAT2-StringTie-ballgown and STAR-StringTie-ballgown RNA-Seq pipelines on the human monocyte dataset (SRP082682). Overall, our tool enables easy analyses of omics datasets, significantly ameliorating complex data analysis pipelines.
  • Placeholder Image
    Publication
    MINREACT: A systematic approach for identifying minimal metabolic networks
    (01-08-2020)
    Sambamoorthy, Gayathri
    ;
    Motivation: Genome-scale metabolic models are widely constructed and studied for understanding various design principles underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and it is possible to minimize the metabolic networks into smaller networks that retain the functionality of the original network. Results: Here, we establish a new method, MINREACT that systematically removes reactions from a given network to identify minimal reactome(s). We show that our method identifies smaller minimal reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method exploits known aspects of network structure and redundancy to identify multiple minimal metabolic networks. We illustrate the utility of MINREACT by identifying multiple minimal networks for 77 organisms from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of compensatory reactions/pathways. We further employed MINREACT for a case study to identify the minimal reactomes of different organisms in both glucose and xylose minimal environments. Identification of minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A comparison of the minimal reactomes on glucose and xylose illustrates that the differences in the reactions required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to identify minimal subsets of reactions that are essential for survival, in a systematic manner. Availability and implementation: Algorithm is available from https://github.com/RamanLab/MinReact.
  • Placeholder Image
    Publication
    Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut
    (01-09-2020)
    Chng, Kern Rei
    ;
    Ghosh, Tarini Shankar
    ;
    Tan, Yi Han
    ;
    Nandi, Tannistha
    ;
    Lee, Ivor Russel
    ;
    Ng, Amanda Hui Qi
    ;
    Li, Chenhao
    ;
    Ravikrishnan, Aarthi
    ;
    Lim, Kar Mun
    ;
    Lye, David
    ;
    Barkham, Timothy
    ;
    ;
    Chen, Swaine L.
    ;
    Chai, Louis
    ;
    Young, Barnaby
    ;
    Gan, Yunn Hwen
    ;
    Nagarajan, Niranjan
    Loss of diversity in the gut microbiome can persist for extended periods after antibiotic treatment, impacting microbiome function, antimicrobial resistance and probably host health. Despite widespread antibiotic use, our understanding of the species and metabolic functions contributing to gut microbiome recovery is limited. Using data from 4 discovery cohorts in 3 continents comprising >500 microbiome profiles from 117 individuals, we identified 21 bacterial species exhibiting robust association with ecological recovery post antibiotic therapy. Functional and growth-rate analysis showed that recovery is supported by enrichment in specific carbohydrate-degradation and energy-production pathways. Association rule mining on 782 microbiome profiles from the MEDUSA database enabled reconstruction of the gut microbial ‘food web’, identifying many recovery-associated bacteria as keystone species, with the ability to use host- and diet-derived energy sources, and support repopulation of other gut species. Experiments in a mouse model recapitulated the ability of recovery-associated bacteria (Bacteroides thetaiotaomicron and Bifidobacterium adolescentis) to promote recovery with synergistic effects, providing a boost of two orders of magnitude to microbial abundance in early time points and faster maturation of microbial diversity. The identification of specific species and metabolic functions promoting recovery opens up opportunities for rationally determining pre- and probiotic formulations offering protection from long-term consequences of frequent antibiotic usage.