Options
Exact minimum eigenvalue distribution of an entangled random pure state
Date Issued
01-04-2008
Author(s)
Abstract
A recent conjecture regarding the average of the minimum eigenvalue of the reduced density matrix of a random complex state is proved. In fact, the full distribution of the minimum eigenvalue is derived exactly for both the cases of a random real and a random complex state. Our results are relevant to the entanglement properties of eigenvectors of the orthogonal and unitary ensembles of random matrix theory and quantum chaotic systems. They also provide a rare exactly solvable case for the distribution of the minimum of a set of N strongly correlated random variables for all values of N (and not just for large N). © 2008 Springer Science+Business Media, LLC.
Volume
131