Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Mechanistic insights into carbo-catalyzed persulfate treatment for simultaneous degradation of cationic and anionic dye in multicomponent mixture using plastic waste–derived carbon
 
  • Details
Options

Mechanistic insights into carbo-catalyzed persulfate treatment for simultaneous degradation of cationic and anionic dye in multicomponent mixture using plastic waste–derived carbon

Date Issued
05-08-2022
Author(s)
Kumar, Sumit
Tewari, Chetna
Sahoo, Nanda Gopal
Ligy Philip 
Indian Institute of Technology, Madras
DOI
10.1016/j.jhazmat.2022.128956
Abstract
Upcycling waste into value-added products for utilization in wastewater abatements has been explored in a number of treatment technologies. One such waste, single-use plastic, which poses significant adverse environmental and economic impact, has been chosen and converted into graphitic carbon to reduce the waste burden sustainably and economically. The sorptive and catalytic performance of synthesized plastic waste-derived carbon (PWC) was evaluated using brilliant green (BG) and eosin yellow (EY) as target pollutants. The adsorption capacity of PWC was very low for BG (7.41 mg/g) and EY (4.93 mg/g). The coupling of PWC with peroxymonosulfate (PMS) promoted dye degradation. Complete degradation of the dye, with ~61% reduction in TOC and ~95% reduction in toxicity, was achieved by oxidative treatment (initial concentration: 10 mg/L). The functionalities of PWC facilitated better electron transfer to PMS for its effective activation, which led to the production of SO4•- and OH•. The quenching study confirmed that the degradation of dyes was primarily due to SO4•-. Additionally, the pathways of dye degradation were proposed based on the intermediates identified. Thus, this study established the high potential of PWC as a metal-free catalyst in PMS activation for the abatement of organic pollutants.
Volume
435
Subjects
  • Carbocatalytic persul...

  • Degradation mechanism...

  • Persulfate-oxidation

  • Plastic waste carbon

  • Textile dyes

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback