Options
Slurry erosion wear resistance of polyurethane coatings with B<inf>4</inf>C Nano powders for hydroturbine applications
Date Issued
01-01-2013
Author(s)
Syamsundar, C.
Indian Institute of Technology, Madras
Indian Institute of Technology, Madras
Maiti, A. K.
Abstract
Hydropower generation from the Himalayan rivers in India face challenge in the form of silt-laden water. These sediments contain abrasive particles which can erode the turbine blades and reduce turbine life. This calls for the development of newer materials for turbine blade. To address this issue in the present investigation, 16Cr- 5Ni martensitic stainless steel has been selected and coated with polyurethane (PU) reinforced with boron carbide (B4C) nano particles to improve the wear resistance. With the increase of B4C content (0-2 wt %) in PU the mechanical properties and erosion wear resistance were investigated. The Shore hardness and pull off adhesion were found to increase with the increased content ofB4C nano particles and from contact angle measurement the coated surfaces are shown to be hydrophilic in nature. This condition reflects better wetting and may be good for cavitation wear resistance. Slurry erosive wear tests were done at various test conditions determined by Taguchi design of experiments of impact velocity, impingement angle, erodent size and slurry concentration. The erosion area of the PU coated samples were analyzed with scanning electron microscope (SEM) and the erosion wear mechanism is discussed Analysis of variance studies of erosion rate indicated that B4C content in PU material is the single most important parameter and interaction of impact velocity and impingement angle are proved to be significant Artificial Neural Network and Genetic Algorithm were employed to arrive at the worst possible scenario.