Options
An Autoencoder Approach to Learning BilingualWord Representations
Date Issued
2014
Author(s)
Chandar, APS
Lauly, S
Larochelle, H
Khapra, MM
Ravindran, B
Raykar, V
Saha, A
Abstract
Cross-language learning allows one to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are coherent between two languages, while not relying on word-level alignments. We show that by simply learning to reconstruct the bag-of-words representations of aligned sentences, within and between languages, we can in fact learn high-quality representations and do without word alignments. We empirically investigate the success of our approach on the problem of cross-language text classification, where a classifier trained on a given language (e.g., English) must learn to generalize to a different language (e.g., German). In experiments on 3 language pairs, we show that our approach achieves state-of-the-art performance, outperforming a method exploiting word alignments and a strong machine translation baseline.
Volume
27