Options
A short-term test method to determine the chloride threshold of steel–cementitious systems with corrosion inhibiting admixtures
Date Issued
01-08-2017
Author(s)
Karuppanasamy, Jayachandran
Indian Institute of Technology, Madras
Abstract
Now-a-days, multiple types of corrosion inhibiting admixtures (CIAs) are being used to enhance the chloride threshold (Clth) of steel–cementitious systems. However, due to the application of external potential to drive chlorides, some existing short-term test methods are not suitable to assess the Clth of S–C systems with CIAs containing anions. This paper presents the development of a Modified Accelerated Chloride Threshold (mACT) test to determine the Clth for S–C systems with CIAs. The test specimens consisted of a mortar cylinder with an embedded steel piece and electrodes forming a 3-electrode corrosion cell. The specimens were exposed to chloride solution and the linear polarization resistance tests were conducted every 3.5 days. The corrosion initiation was detected using statistical analysis of the repeated Rp measurements. After corrosion initiation, the chloride content in mortar adjacent to the embedded steel piece was determined and defined as Clth. The time required to complete mACT test for an S–C system with CIAs is about 120 days. The Clth of eight specimens each with S–C system containing (i) without inhibitor, (ii) anodic inhibitor [calcium nitrite] and (iii) bipolar inhibitor [both calcium nitrite and amino alcohol] were determined. Both anodic and bipolar CIAs showed enhanced corrosion resistance. Also, the bipolar inhibitor performed better than anodic inhibitor. It was concluded that the use of CIAs could significantly delay the initiation of chloride-induced corrosion. The mACT test can be used to determine the Clth and estimate the service life during the planning and design stages of a project and help select durable materials.
Volume
50