Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Reconstruction using a simple triangle removal approach
 
  • Details
Options

Reconstruction using a simple triangle removal approach

Date Issued
27-11-2017
Author(s)
Methirumangalath, Subhasree
Parakkat, Amal Dev
Kannan, Shyam Sundar
Muthuganapathy, Ramanathan 
Indian Institute of Technology, Madras
DOI
10.1145/3145749.3149447
Abstract
Given a finite set of points P ? R3, sampled from a surface S, surface reconstruction problem computes a model of S from P, typically in the form of a triangle mesh. The problem is ill-posed as various models can be reconstructed from a given point set. In this paper, curve reconstruction in R2, is initially looked at using the Delaunay triangulation (DT) of a point set. The key idea is that the edges in the DT are prioritized and the interior or exterior edges of the DT are removed as long as it has at least one adjacent triangle. Theoretically, it is shown that the reconstruction is homeomorphic to a simple closed curve. Extending this to 3D, an approach based on ‘retaining solitary triangles’ and ‘removing triangles anywhere’ has been proposed. An additional constraint based on the circumradius of a triangle has been employed. Results on public and real-world scanned data, and qualitative/quantitative comparisons with existing methods show that our approach handles diverse features, outliers and noise better or comparable with other methods.
Subjects
  • Delaunay triangulatio...

  • Point set

  • Surface reconstructio...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback