Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication11
  4. On hypergeometric functions and function spaces
 
  • Details
Options

On hypergeometric functions and function spaces

Date Issued
15-02-2002
Author(s)
Balasubramanian, R.
Ponnusamy Saminathan 
Indian Institute of Technology, Madras
Vuorinen, M.
DOI
10.1016/S0377-0427(01)00417-4
Abstract
The aim of this paper is to discuss the role of hypergeometric functions in function spaces and to prove some new results for these functions. The first part of this paper proves results such as monotone, convexity and concavity properties of sums of products of hypergeometric functions. The second part of our results deals with the space A of all normalized analytic functions f, f (0) = 0 = f′ (0) - 1, in the unit disk △ and the subspace R(β) = {f ∈ A: ∃ η ∈ R such that Re eiη (f′ (z) - β >0, z ∈ △ }. For f ∈ A, we consider integral transforms of the type f (tz) Vλ (f) = ∫01 λ (t)t/f(tz) dt, where λ(t) is a real valued nonnegative weight function normalized so that ∫01 λ(t) = 1. We obtain conditions on β and the function λ such that Vλ(f) takes each member of R(β) into a starlike function of order β, β ∈ [0, 1/2]. These results extend and improve the earlier known results in these directions. We end the paper with an open problem. © 2002 Elsevier Science B.V. All rights reserved.
Volume
139
Subjects
  • Close-to-convex

  • Convex

  • Hypergeometric functi...

  • Starlike

  • Univalent

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback