Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. TCP Reno and queue management: Local stability and Hopf bifurcation analysis
 
  • Details
Options

TCP Reno and queue management: Local stability and Hopf bifurcation analysis

Date Issued
01-01-2013
Author(s)
Raman, Shankar
Mohan, Archith
Gaurav Raina 
Indian Institute of Technology, Madras
DOI
10.1109/CDC.2013.6760387
Abstract
We study local stability and the local Hopf bifurcation properties of a fluid model for TCP Reno coupled with queue management schemes in routers. We analyse models for the widely deployed Drop-Tail queue policy, over a small and an intermediate buffer regime. We also study a model for a threshold based queue policy. In small Drop-Tail buffers, stability depends crucially on the buffer size. With intermediate buffer Drop-Tail, the system can be locally unstable for large values of the feedback delay and link capacities. The threshold based policy highlights the importance of setting queue thresholds guided by stability analysis. We show that variations in system parameters can produce Hopf induced limit cycles. It is practically important to characterise the existence, uniqueness and stability of the bifurcating periodic solutions. Using the theory of normal forms and the center manifold theorem, we establish that the Hopf bifurcation is indeed supercritical. Packet-level simulations for the Drop-Tail queue policy corroborate our theoretical analysis. ©2013 IEEE.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback