Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Metal–insulator transition in epitaxial Ga-doped ZnO films via controlled thickness
 
  • Details
Options

Metal–insulator transition in epitaxial Ga-doped ZnO films via controlled thickness

Date Issued
03-03-2021
Author(s)
Mukherjee, Joynarayan
Birabar Ranjit Kumar Nanda 
Indian Institute of Technology, Madras
Ramachandra Rao, M. S.
DOI
10.1088/1361-648X/abc800
Abstract
Understanding and tuning of metal–insulator transition (MIT) in oxide systems is an interesting and active research topics of condensed matter physics. We report thickness dependent MIT in Ga-doped ZnO (Ga:ZnO) thin films grown by pulsed laser deposition technique. From the electrical transport measurements, we find that while the thinnest film (6 nm) exhibits a resistivity of 0.05 Ω cm, lying in the insulating regime, the thickest (51 nm) has resistivity of 6.6 × 10−4 Ω cm which shows metallic type of conduction. Our analysis reveals that the Mott’s variable range hopping model governs the insulating behavior in the 6 nm film whereas the 2D weak localization (WL) phenomena is appropriate to explain the electron transport in the thicker Ga:ZnO films. Magnetoresistance study further confirms the presence of strong localization in 6 nm film while WL is observed in 20 nm and above thicker films. From the density functional calculations, it is found that due to surface reconstruction and Ga doping, strong crystalline disorder sets in very thin films to introduce localized states and thereby, restricts the donor electron mobility.
Volume
33
Subjects
  • Ga doped ZnO epitaxia...

  • Magnetoresistance

  • Metal–insulator trans...

  • Weak localization

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback