Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Combined effects of buoyancy and electric forces on non-isothermal melting of a dielectric phase change material
 
  • Details
Options

Combined effects of buoyancy and electric forces on non-isothermal melting of a dielectric phase change material

Date Issued
01-06-2022
Author(s)
Selvakumar, R. Deepak
Sankaranarayanan Vengadesan 
Indian Institute of Technology, Madras
DOI
10.1016/j.ijmultiphaseflow.2022.104029
Abstract
Numerical investigations of non-isothermal melting of a dielectric PCM under the combined influence of buoyancy and electric forces have been performed. The coupled set of governing equations which include the Poisson equation for electric potential, Nernst–Planck equation for charge transport, Navier–Stokes equations and the energy equation are implemented in the finite-volume framework of OpenFOAM®. The solid–liquid phase change is modeled by an enthalpy source based approach and temperature dependent dielectric properties have been considered. The dynamic evolution of the electrohydrodynamics (EHD) assisted melting process is analyzed. In the presence of electric field, melting rate curve undergoes a deflection at a point that indicates the shift from natural convection dominated melting to electroconvection dominated melting. The EHD flow compliments the buoyancy driven flow, and the multiple smaller convective rolls of EHD flow enhances the mixing in liquid region. The melting time is a decreasing function of electric Rayleigh number T, whereas, the maximum melt fraction is an increasing function of T. Although the role of Rayleigh number Ra is minimal at higher values of T, Ra determines the occurrence of deflection point. The dielectric force induced by the temperature dependent dielectric properties does not have a significant influence on the melting process, for the parameters considered in this study.
Volume
151
Subjects
  • Buoyancy force

  • Coulomb force

  • Electrohydrodynamics

  • Finite-Volume Method ...

  • Solid–liquid phase ch...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback