Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Dual Absorption Broadband Photoacoustic Technique to Eliminate Interference in Gas Mixtures
 
  • Details
Options

Dual Absorption Broadband Photoacoustic Technique to Eliminate Interference in Gas Mixtures

Date Issued
15-03-2023
Author(s)
Kumar, K. Saran
Vidhya, Y. Esther Blesso
Selvaraj, Ramya
Satyanarayanan S 
Indian Institute of Technology, Madras
Nagendra, S. M.Shiva
Nilesh J Vasa 
Indian Institute of Technology, Madras
DOI
10.1109/JSEN.2023.3239885
Abstract
This article presents a dual-wavelength band broadband photoacoustic spectroscopy (BPAS) technique ideally suited to low-energy broadband sources for industrial and environmental multigas sensing applications. The broad spectral range of the supercontinuum source is used to cover a wide range of absorption bands of various gases. The major limitation in most of the gas sensors with broadband sources is the effect of interference between gases. This article proposes a dual-wavelength technique to eliminate the impact of cross sensitivity among gases. This sensor exhibits a comprehensive concentration measurement from parts per million (ppm) to % levels. The proposed technique showed a ±1.2% error between the calculated and calibrated concentration values. We achieved a minimum detection limit (MDL) of 0.4 and 0.7 ppm for methane (CH4) with an integration time of 142 and 200 s using 2315- and 1650-nm band, respectively, 0.3 and 1.8 ppm of ammonia (NH3) with an integration time of 100 and 48 s using 2315- and 2017-nm band, respectively, and also 2.6 ppm of carbon monoxide (CO) with an integration time of 71 s using the 2315-nm band.
Volume
23
Subjects
  • Broadband photoacoust...

  • cross sensitivity

  • dual absorption

  • dual-wavelength techn...

  • multigas sensing

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback