Options
Studies on impingement effects of low density jets on surfaces - Determination of shear stress and normal pressure
Date Issued
16-05-2005
Author(s)
Indian Institute of Technology, Madras
Kurian, Job
Abstract
This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows. © 2005 American Institute of Physics.
Volume
762