Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Nonlinear dynamics of dry friction oscillator subjected to combined harmonic and random excitations
 
  • Details
Options

Nonlinear dynamics of dry friction oscillator subjected to combined harmonic and random excitations

Date Issued
01-07-2022
Author(s)
Kumar, Pankaj
Narayanan, S.
DOI
10.1007/s11071-022-07483-7
Abstract
The dynamics of a nonlinear single degree freedom oscillator on a moving belt subjected to combined harmonic and random excitations is numerically investigated. The dynamics is described by differential equations with discontinuities due to dry friction between the mass and the belt. The discontinuous oscillator is modelled as a Filippov system. Discontinuity induced bifurcations such as the adding sliding bifurcations due to harmonic excitation and stochastic bifurcations like the P and D bifurcations are investigated by numerically integrating the equations of motion using an adaptive time stepping method. A bisection approach is used to accurately determine the discontinuity point, and a Brownian tree approach is used to follow the correct Brownian path. The associated Fokker–Planck (FP) equation is solved by the finite element method. The largest Lyapunov exponent is computed by using the Müller jump matrix and the Wedig algorithm. The effects of the system parameters on the dynamics of the system are investigated.
Volume
109
Subjects
  • Discontinuity-induced...

  • Discontinuous system

  • Dry friction oscillat...

  • Filippov model

  • Fokker–Planck equatio...

  • Nonlinear stochastic ...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback