Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Hydrogen Evolution Activity of Nitrogen-Rich g-C<inf>3-x</inf>N<inf>4+x</inf> Synthesized by Solid-Gas Interface Method
 
  • Details
Options

Hydrogen Evolution Activity of Nitrogen-Rich g-C<inf>3-x</inf>N<inf>4+x</inf> Synthesized by Solid-Gas Interface Method

Date Issued
01-01-2023
Author(s)
Rajendramani, Radha
Madan, Krateeka
Kallingal, Mohammed Sadik Nalakath
Guru, Sruthi
De, Susmita
Gangavarapu, Ranga Rao
DOI
10.1021/acs.langmuir.3c00867
Abstract
Synthesis of a metal-free carbon nitride (g-C3N4) photocatalyst in the form of nitrogen-rich g-C3-xN4+x derivatives is desirable for efficient solar to hydrogen conversion and remains a challenging task to achieve. Herein we report the development of homogeneous sheets of nitrogen-rich graphitic carbon nitride samples from melamine by a solid-gas interface approach. Using this method, pure g-C3N4 (CN), g-C3-xN4+x under ammonia flow (CN-NH3) and g-C3-xN4+x under nitrogen flow (CN-N2) are prepared. The g-C3-xN4+x (CN-NH3) sample shows better surface conductivity, wide optical absorbance in the visible region, reduced recombination and high electron donor density, and higher performance toward photoelectrochemical hydrogen evolution (HER). The g-C3-xN4+x (CN-NH3) generates a photocurrent of 2.06 μA cm-2, which is 2.5 times higher than that of the pure g-C3N4 (CN) sample (0.85 μA cm-2). It also shows higher photocatalytic water splitting ability compared to the CN and CN-N2 samples, generating 634 μmol g-1 hydrogen without cocatalyst and 1163 μmol g-1 of hydrogen with Pt cocatalyst. Density functional calculations suggest that the progressive band gap reduction with the increase in the N-dopant percentage can be attributed to the gradual increase in the partial π-occupations, which can lead to a significant stabilization of the conduction band minima. The theoretical modeling, however, indicates a saturation in the band gap effect after 75% of N-dopant. The onset potential of g-C3-xN4+x for HER appears at η = 0.43 V in dark and η = 0.34 V vs Ag/AgCl under solar light illumination of 1 sun.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback