Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Interface Microstructure-Based Mechanical Property Evaluation of C-S-H
 
  • Details
Options

Interface Microstructure-Based Mechanical Property Evaluation of C-S-H

Date Issued
01-02-2023
Author(s)
Alex, Aleena
Ilango, Nirrupama Kamala
Pijush Ghosh 
Indian Institute of Technology, Madras
DOI
10.1061/(ASCE)MT.1943-5533.0004581
Abstract
The grain-grain interface of cement, which is composed of the complex needle-shaped microstructure of calcium silicate hydrate (C-S-H), is crucial in the development of the mechanical properties of cementitious composites. These C-S-H needles grow radially outward from the grain surface. This work proposes a combined experimental and modeling approach to incorporate the finer details of these needle geometries and the distribution of mechanical properties in an interface-based multiscale mechanical model for hydrating tricalcium silicate (C3S). At micrometer and sub-micrometer length scales (<5 μm), electron microscopy images revealed that the geometrical nature of these needles at the grain interface varies with days of hydration. The mechanical properties of C-S-H at the nanoscale were observed to be higher at the inner core and reduced toward the outer product. The model developed can incorporate the details of these needle microstructures and their mechanical properties at the microscale and can predict the bulk properties of hydrated C3S at higher scales.
Volume
35
Subjects
  • Computational modelin...

  • Hydration

  • Interface

  • Needle microstructure...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback