Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
 
  • Details
Options

Representation and feature selection using multiple kernel learning

Date Issued
18-11-2009
Author(s)
Dileep, A. D.
C Chandra Sekhar 
Indian Institute of Technology, Madras
DOI
10.1109/IJCNN.2009.5178897
Abstract
Multiple kernel learning (MKL) approach for selecting and combining different representations of a data is presented. Selection of features from a representation of data using the MKL approach is also addressed. A base kernel function is used for each representation as well as for each feature from a representation. A new kernel is obtained as a linear combination of base kernels, weighted according to the relevance of representation or feature. The MKL approach helps to select and combine the representations as well as to select features from a representation. Issues in the MKL algorithm are addressed in the framework of support vector machines (SVM). Studies on the representation and feature selection are presented for an image categorization task. © 2009 IEEE.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback