Options
Human-machine collaboration for face recognition
Date Issued
05-01-2020
Author(s)
Ravindranath, Saurabh
Baburaj, Rahul
Balasubramanian, Vineeth N.
Namburu, Nageswara Rao
Gujar, Sujit
Jawahar, C. V.
Abstract
Despite advances in deep learning and facial recognition techniques, the problem of fault-intolerant facial recognition remains challenging. With the current state of progress in the field of automatic face recognition and the in-feasibility of fully manual recognition, the situation calls for human-machine collaborative methods. We design a system that uses machine predictions for a given face to generate queries that are answered by human experts to provide the system with the information required to predict the identity of the face correctly. We use a Markov Decision Process for which we devise an appropriate query structure and a reward structure to generate these queries in a budget or accuracy-constrained setting. Finally, as we do not know the capabilities of the human experts involved, we model each human as a bandit and adopt a multi-armed bandit approach with consensus queries to efficiently estimate their individual accuracies, enabling us to maximize the accuracy of our system. Through careful analysis and experimentation on real-world data-sets using humans, we show that our system outperforms methods that exploit only machine intelligence, simultaneously being highly cost-efficient as compared to fully manual methods. In summary, our system uses human-machine collaboration for face recognition problem more intelligently and efficiently.