Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Indirect Damage Identification in Bridges Based on Dynamic Tyre Pressure Monitoring
 
  • Details
Options

Indirect Damage Identification in Bridges Based on Dynamic Tyre Pressure Monitoring

Date Issued
01-04-2021
Author(s)
Kumar, G. Sai
Krishnanunni, C. G.
B Nageswara Rao 
Indian Institute of Technology, Madras
DOI
10.1142/S0219455421500565
Abstract
This paper deals with an indirect health monitoring strategy for bridges using an instrumented vehicle. Thermodynamic principles are used to relate the change in Vehicle-Bridge-Interaction (VBI) forces to the change in dynamic tyre pressure. The damage identification process involves two stages. In the first stage, the unknown tyre model parameters are estimated using Bayesian inference based on the calibration data. The approach uses a Stein variational gradient descent implementation of the Bayes rule to quantify the uncertainty in the estimated tyre parameters. In the second stage, the calibrated tyre model is used to reconstruct the change in VBI force from measured tyre pressure data considering a damaged bridge. It is observed that damage present in the bridge produces notable changes in VBI force. Contour plots based on VBI force and natural frequency are developed for damage detection. The reconstructed VBI force change is used to quantify damage using the contour plots. Further, the least square estimation approach is adopted for damage identification by defining appropriate objective functions and imposing constraints on the damage indicators. The damage is estimated by minimizing the objective function using Cuckoo search algorithm. Numerical experiments reveal that the developed method could be used for accurate damage identification in the presence of measurement noise, uncertainty in estimated tyre parameters, and the uncertainty in bridge model parameters.
Volume
21
Subjects
  • Bayesian inference

  • Damage detection

  • system identification...

  • tyre pressure monitor...

  • vehicle-bridge intera...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback