Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Crosslinked acellular saphenous vein for small-diameter vascular graft
 
  • Details
Options

Crosslinked acellular saphenous vein for small-diameter vascular graft

Date Issued
01-06-2013
Author(s)
Ramesh, Balasundari
Mathapati, Santosh
Galla, Satish
Cherian, Kotturathu Mammen
Guhathakurta, Soma
DOI
10.1177/0218492312454019
Abstract
Objective: Patients with congenital and acquired heart diseases or arteriopathy require small-diameter vascular grafts for arterial reconstruction. Autologous veins are the most suitable graft, but when absent, an alternative is necessary. This work addresses the issue. Background: Tissue-engineering efforts to create such grafts by modifications of acellular natural scaffolds are considered a promising area. Methods: Homologous saphenous veins harvested from cadavers and organ donors were processed by decellularization with detergent and enzymatic digestion, followed by crosslinking by dye-mediated photooxidation. They were validated for acellularity, mechanical strength, and crosslink stability. In-vitro and in-vivo cytotoxicity and hemocompatibility studies were conducted. Collagen conformity was studied by Fourier transform infrared spectroscopy, and heat stability by differential scanning calorimetry. A limited large animal study was performed. Results: The processing method delivered biocompatible, hemocompatible, effectively crosslinked grafts, with high heat stability of 126 °C, an enthalpy value of 183.5 J·g -1, and collagen conformity close to that of the native vein. The mechanical strength was 250% better than the native vein. The presence of extracellular matrix proteins allowed the acellular vein to become a triple-layered vascular structure in the sheep venous system. Conclusion: Crosslinking after decellularization by the dye-mediated photooxidation method could be reproduced in any human vein to obtain a small-diameter vascular grafts. © 2012 The Author(s).
Volume
21
Subjects
  • Biocompatible materia...

  • blood vessel prosthes...

  • materials testing

  • saphenous vein

  • vascular diseases

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback