Options
Crosslinked acellular saphenous vein for small-diameter vascular graft
Date Issued
01-06-2013
Author(s)
Ramesh, Balasundari
Mathapati, Santosh
Galla, Satish
Cherian, Kotturathu Mammen
Guhathakurta, Soma
Abstract
Objective: Patients with congenital and acquired heart diseases or arteriopathy require small-diameter vascular grafts for arterial reconstruction. Autologous veins are the most suitable graft, but when absent, an alternative is necessary. This work addresses the issue. Background: Tissue-engineering efforts to create such grafts by modifications of acellular natural scaffolds are considered a promising area. Methods: Homologous saphenous veins harvested from cadavers and organ donors were processed by decellularization with detergent and enzymatic digestion, followed by crosslinking by dye-mediated photooxidation. They were validated for acellularity, mechanical strength, and crosslink stability. In-vitro and in-vivo cytotoxicity and hemocompatibility studies were conducted. Collagen conformity was studied by Fourier transform infrared spectroscopy, and heat stability by differential scanning calorimetry. A limited large animal study was performed. Results: The processing method delivered biocompatible, hemocompatible, effectively crosslinked grafts, with high heat stability of 126 °C, an enthalpy value of 183.5 J·g -1, and collagen conformity close to that of the native vein. The mechanical strength was 250% better than the native vein. The presence of extracellular matrix proteins allowed the acellular vein to become a triple-layered vascular structure in the sheep venous system. Conclusion: Crosslinking after decellularization by the dye-mediated photooxidation method could be reproduced in any human vein to obtain a small-diameter vascular grafts. © 2012 The Author(s).
Volume
21